a2 United States Patent

US009467437B2

10) Patent No.: US 9,467,437 B2

Krishnaprasad et al. 45) Date of Patent: *Oct. 11, 2016
(54) FLEXIBLE AUTHENTICATION (52) US. CL
FRAMEWORK CPC ... HO4L 63/08 (2013.01); GO6F 17/30011
(71) Applicant: Oracle International Corporation, (2013.01); GOGF 17/30321 (2013.01);
Redwood Shores, CA (US) (Continued)
(72) Inventors: Muralidhar Krishnaprasad, Frenmont, (58) Field of Classification Search
CA (US); Mark Davis, Fremont, CA CPC oo HO4L 63/08
(82)5 z[al('ik glre, %anta ClarésA CA g See application file for complete search history.
. 3 3 t .
(US); Cindy Hsin, Fremont, (US); (56) References Cited

Meeten Bhavsar, Emerald Hills, CA
(US); Hiroshi Koide, San Francisco,
CA (US); Joaquin Delgado, Santa
Clara, CA (US); Chi-Ming Yang,
Sunnyvale, CA (US); Visar Nimani,
Jacksonville, FL. (US); Hui Ouyang,
Fremont, CA (US); Sachin Bhatkar,
Sunnyvale, CA (US); Thomas Chang,
Redwood Shores, CA (US)

(73) Assignee: ORACLE INTERNATIONAL
CORPORATION, Redwood Shores,
CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-
claimer.

(21) Appl. No.: 14/926,521

(22) Filed: Oct. 29, 2015

(65) Prior Publication Data

US 2016/0119321 Al Apr. 28, 2016
Related U.S. Application Data

(63) Continuation of application No. 11/680,530, filed on
Feb. 28, 2007, now Pat. No. 9,177,124.

(60) Provisional application No. 60/778,151, filed on Mar.
1, 2006, provisional application No. 60/777,988, filed

on Mar. 1, 2006, provisional application No.
60/800,737, filed on May 16, 2006.

(51) Int. CL
HO4L 29/06 (2006.01)
GOGF 21/31 (2013.01)

(Continued)

U.S. PATENT DOCUMENTS

5,493,677 A * 2/1996 Balogh GOGF 17/3025
382/305
5,751,949 A * 5/1998 Thomson GOGF 21/6227
726/4

(Continued)

OTHER PUBLICATIONS

Yahalom et al.; Trust relationships in secure systems—a distributed
authentication perspective; Published in: Research in Security and
Privacy, 1993. Proceedings., 1993 IEEE Computer Society Sym-
posium on Date of Conference: May 24-26, 1993; pp. 150-164;
IEEE Xplore.™*

(Continued)

Primary Examiner — Bradley Holder
(74) Attorney, Agent, or Firm — Kilpatrick Townsend &
Stockton LLP

(57) ABSTRACT

A flexible and extensible architecture allows for secure
searching across an enterprise. Such an architecture can
provide a simple Internet-like search experience to users
searching secure content inside (and outside) the enterprise.
The architecture allows for the crawling and searching of a
variety of sources across an enterprise, regardless of whether
any of these sources conform to a conventional user role
model. The architecture further allows for security attributes
to be received at query time, for example, in order to provide
real-time secure access to enterprise resources. The user
query also can be transformed to provide for dynamic
querying that provides for a more current result list than can
be obtained for static queries.

20 Claims, 27 Drawing Sheets

US 9,467,437 B2

Page 2

(51) Int. CL

GO6F 21/62
GO6F 17/30

(52)

(56)

5,845,278

5,884,312
5,926,808
5,963,642
5,987,482
6,006,217
6,012,053
RE36,727
6,094,649
6,182,142

6,185,567
6,236,991
6,301,584
6,326,982
6,356,891
6,356,897
6,424,973
6,516,416
6,631,369
6,671,681
6,678,683
6,678,731
6,711,568
6,734,886
6,735,585
6,754,873
6,757,669
6,766,314
6,826,597
6,847,977
6,848,077
6,865,608
6,928,166
6,978,275
7,031,954

7,100,207
7,110,983
7,113,939
7,136,876
7,236,923
7,257,577
7,287,214

7,290,288
7,305,475
7,340,454
7,370,381
7,373,351
7,437,351
7,472,113
7,493,301
7,584,120
7,627,564
7,636,714
7,640,196
7,668,825
7,680,819
7,711,676
7,711,835

U.S. CL
CPC ..

(2013.01)
(2006.01)

GO6F17/30477 (2013.01); GO6F 17/30554

(2013.01); GOG6F 17/30864 (2013.01); GO6F

17/30867 (2013.01); GO6F 21/31 (2013.01);

GO6F 21/6227 (2013.01); HO4L 63/083

(2013.01); HO4L 63/0815 (2013.01); HO4L

63/102 (2013.01)

References Cited

U.S. PATENT DOCUMENTS

A*

12/1998

3/1999
7/1999
10/1999
11/1999
12/1999
1/2000
6/2000
7/2000
1/2001

2/2001
5/2001
10/2001
12/2001
3/2002
3/2002
7/2002
2/2003
10/2003
12/2003
1/2004
1/2004
3/2004
5/2004
5/2004
6/2004
6/2004
7/2004
11/2004
1/2005
1/2005
3/2005
8/2005
12/2005
4/2006

8/2006
9/2006
9/2006
11/2006
6/2007
8/2007
10/2007

10/2007
12/2007
3/2008
5/2008
5/2008
10/2008
12/2008
2/2009
9/2009
12/2009
12/2009
12/2009
2/2010
3/2010
5/2010
5/2010

Kirsch ..occoovnen. GO6F 17/3061
707/688

Dustan HO4L 63/0428

Evans GO6F 17/3061

Goldstein

Bates et al.

Lumsden

Pant et al.

Kageneck et al.

Bowen et al.

Win GOGF 21/604
709/219

GO6F 17/30893

Ratnaraj
Frauenhofer et al.
Ranger

Wu et al.
Agrawal et al.
Gusack
Baclawski

Gregg et al.
Meyerzon et al.
Emens et al.
Shiiyama
Howard et al.
Bharat et al.
Hagan et al.
Black et al.

Law et al.

Adar et al.
Burnett

Lonnroth et al.
Abajian
McBrearty et al.
Hunter
Yoshizawa
Castellanos et al.
Kirsch

GO6F 17/30867
707/706

Prager
Shear et al.
Chou et al.
Adar et al.
Gupta
Fagin et al.
Jenkins GO6F 17/30595
707/999.006

Gregg et al.
Tock

Wu et al.
Tuttle et al.
Wu et al.
Page
Watson et al.
Palmon
Yun et al.

Yao et al.
Lamping et al.
Weiss

Vogel et al.
Mellmer et al.
Stuhec
Braddy et al.

GO6F 17/3061

GO6F 17/30884

7,716,243
7,725,465
7,743,064
7,752,221
7,822,733
7,941,419
7,970,791
7,996,392
8,005,816
8,027,982
8,065,423
8,214,394
8,239,414
8,316,007
8,332,430
8,352,475
8,412,717
8,433,712
8,595,255
8,601,028
8,626,794
8,707,451
8,725,770
8,868,540
8,875,249
9,081,816
9,177,124
9,251,364
2001/0039563
2001/0042075
2002/0016730
2002/0042764
2002/0099731

2002/0103786
2002/0174122
2002/0178394
2002/0184170
2003/0014483
2003/0051226
2003/0055816
2003/0055907
2003/0065670
2003/0069880
2003/0074328
2003/0074354
2003/0074411
2003/0105966

2003/0126140
2003/0130993
2003/0139921
2003/0177388

2003/0204501
2003/0208547
2003/0208684

2003/0220917
2004/0006585
2004/0041019

2004/0044952
2004/0062426
2004/0064340
2004/0064687

2004/0078371
2004/0083127
2004/0088313
2004/0093331
2004/0122811
2004/0158527
2004/0168066

2004/0199491
2004/0225643
2004/0230572
2004/0243555

*

5/2010
5/2010
6/2010
7/2010
10/2010
5/2011
6/2011
8/2011
8/2011
9/2011
11/2011
7/2012
82012
11/2012
12/2012
1/2013
4/2013
4/2013
11/2013
12/2013
1/2014
4/2014
5/2014
10/2014
10/2014
7/2015
11/2015
2/2016
11/2001
11/2001
2/2002
4/2002
7/2002

8/2002
11/2002
11/2002
12/2002

1/2003

3/2003

3/2003

3/2003

4/2003

4/2003

4/2003

4/2003

4/2003

6/2003

7/2003
7/2003
7/2003
9/2003

10/2003
11/2003
11/2003

11/2003
1/2004
3/2004

3/2004
4/2004
4/2004
4/2004

4/2004
4/2004
5/2004
5/2004
6/2004
8/2004
8/2004

10/2004
11/2004
11/2004
12/2004

Schwartz et al.
Liao et al.

Faulkner et al.
Krishnaprasad et al.
Son

Bhatkar et al.

Liao et al.

Liao et al.
Krishnaprasad et al.
Ture et al.

Braddy et al.
Krishnaprasad et al.
Liao et al.

Liao

Koide et al.
Bhatkar et al.

Liao et al.

Koide et al.
Krishnaprasad et al.
Liao et al.

Liao et al.

Ture et al.

Koide et al.

Ture et al.

Ture et al.
Krishnaprasad et al.
Krishnaprasad et al.

Ture et al.

Tian

Tabuchi GOGF 21/6218

Foulger et al.

Gardner et al.

Abajian GO6F 17/3002
715/202

Goel

Chou ..oocovvnnnn GO6F 17/30545

Bamberger et al.
Gilbert et al.
Stevenson et al.
Zimmer et al.
Paine et al.
Stiers

Bisson et al.
Harrison et al.
Schiff et al.

GO6F 17/30011

GO6F 21/31
713/186

Engelhardt-Cronk et al.

Mendelevitch et al.

Byrd et al.
Botz .o, HO04L 63/0807
726/10

Moonceee GOGF 17/30864

Branimir

Camacho GOGF 21/32
703/186

Copperman et al.

Paulus et al.

Schneider GOGF 21/32
235/382

Jiang et al.

Lo

Johnston

Pfitzmann G06Q 20/4014
713/100

Worrall et al.
Lunsford et al.
Torres

Garner et al.
Page
Lambert
Alden

GO6F 17/30864

HO4L 63/083
713/182

Bhatt

Alpha et al.
Omoigui
Bolsius et al.

US 9,467,437 B2

Page 3
(56) References Cited 2008/0005108 Al 1/2008 Ozzie et al.
2008/0086297 Al 4/2008 Li et al.
U.S. PATENT DOCUMENTS 2008/0114721 Al 5/2008 Jones et al.
2008/0168037 Al* 7/2008 Kapadia GOGF 21/6236
2004/0260685 Al 12/2004 Pfleiger et al. 2008/0222138 Al 9/2008 Liu et al.
2005/0004943 Al 1/2005 Chang 2009/0006356 Al 1/2009 Liao et al.
2005/0015381 Al 1/2005 Clifford et al. 2009/0006359 Al 1/2009 Liao
2005/0015466 Al 1/2005 Tripp 2010/0185611 Al 7/2010 Liao et al.
2005/0050023 Al 3/2005 Gosse et al. 2011/0246443 Al 10/2011 B_hatka.r et al.
2005/0050037 Al 3/2005 Frieder et al. 2011/0258184 Al 102011 Liao et al.
2005/0060297 Al 3/2005 Najork 2011/0265189 A1 10/2011 Liao et al.
2005/0071224 Al 3/2005 Fikes et al. 2012/0072426 Al 3/2012 Ture et al.
2005/0071766 Al 3/2005 Brill et al. 2012/0272304 Al 10/2012 Liao et al.
2005/0080775 Al 4/2005 Colledge et al. 2012/0278303 Al 11/2012 Krishnaprasad et al.
2005/0102251 Al 5/2005 Gillespie 2013/0158855 Al 6/2013 Weir et al.
2005/0108207 AL* 5/2005 Thuerk GOGF 17/30861 2013/0173582 Al 7/2013 Liao et al.
2005/0114226 Al 5/2005 Tripp et al. 2013/0185332 Al 7/2013 Ko!de et al.
2005/0114324 Al* 5/2005 Mayer GO6F 17/30991 2013/0311459 Al 112013 Koide et al.
2005/0119999 Al 6/2005 Zait et al. 2014/0046978 Al 2/2014 Krishnaprasad et al.
2005/0154730 Al 7/2005 Miller et al. 2014/0114946 Al 4/2014 Ture et al.
2005/0165744 Al 7/2005 Taylor et al. 2016/0055209 Al 2/2016 Krishnaprasad et al.
2005/0187937 Al 8/2005 Kawabe et al.
2005/0210008 Al 9/2005 Tran et al.
2005/0210017 Al 9/2005 Cucerzan OTHER PUBLICATIONS
%882;83%29‘28 ﬁ} 18;3882 B?;{)a;tﬁl' Czerwinski et al.; An architecture for a secure service discovery
2005/0234859 Al 10/2005 FEbata ' service; Published in: Proceeding MobiCom *99 Proceedings of the
2005/0262050 Al 11/2005 Fagin et al. Sth annual ACM/IEEE international conference on Mobile comput-
2005/0289111 Al 12/2005 Tr_ibble et al. ing and networking; 1999; pp. 24-35; ACM Digital Library.*
2006/0023945 Al* 2/2006 King ..o HO4N 1/00244 U.S. Appl. No. 14/144,315, Notice of Allowability mailed on Dec.
2006/0036598 Al 2/2006 Wu ST 8, 2015, all pages.
2006/0064411 Al 32006 Gross ef al. Lja.zé?ppl. No. 13/213,422, Advisory Action dated Dec. 4, 2015, all
2006/0075120 Al 4/2006 Smit . . .
2006/0080316 Al* 4/2006 Gilmore GOG6F 17/30864 U.S. Appl. No. 13/868,069, Advisory Action dated Mar. 24, 2016,
2006/0123472 Al* 6/2006 Schmidt GO6F 21/41 all pages. o _ _
726/8 Oracle Text—Application Developers Guide, Retrieved from the
2006/0129538 Al 6/2006 Baader et al. Internet: URL: http://sqltech.cl/doc/oracle9ir2/text.920/a96517 .pdf,
2006/0129555 Al 6/2006 Burdick et al. 2002, 220 pages.
2006/0136194 Al 6/2006 Armstrong et al. The Authoritative Dictionary of IEEE Standards Terms, Seventh
2006/0136405 Al 6/2006 Ducatel et al. Edition, Published by Standards Information Network, IEEE Press,
2006/0167857 Al 7/2006 Kraft et al. Dec. 2000, pp. 1-4.
2006/0195914 Al 8/2006 Schwartz et al. 2000, 18 }')ag; -0, el Bl Action matied on A4y 7,
%882;83?232 ﬁ} ggggg %I]zzn;eill U.S. Appl. No. 11/648,981, Non-Final Office Action mailed on Dec.
2006/0224627 Al 10/2006 Manikutty et al. L1, 2008, 13 pages. _ _ _
2006/0229911 Al 10/2006 Gropper et al. U.S. Appl. No. 11/649,010, Final Office Action mailed on Apr. 17,
2006/0230011 Al 10/2006 Tuitle et al. 2009, 10 pages.
2006/0230022 Al 10/2006 Bailey et al. U.S. Appl. No. 11/649,010, Non-Final Office Action mailed on Nov.
2006/0271568 Al 11/2006 Balkir et al. 7, 2008, 12 pages.
2006/0294077 Al 12/2006 Bluhm et al. U.S. Appl. No. 11/649,010, Non-Final Office Action mailed on Oct.
2007/0016583 Al 1/2007 Lempel et al. 2, 2009, 6 pages.
2007/0016625 Al /2007 Berstis U.S. Appl. No. 11/649,010, Notice of Allowance mailed on Apr. 5,
2007/0027750 Al 2/2007 Chou 2010, 7 pages
2007/0061393 Al 3/2007 Moore ’ ' - - -
2007/0004210 Al 42007 Craig et al. Izjo?oA%)lpi\g;S 11/649,098, Final Office Action mailed on Feb. 19,
2007/0094710 Al 4/2007 Walker et al. ’ :
2007/0100915 Al 5/2007 Rsseeerteala USs. Appl No. 11/649,098, Final Office Action mailed on Dec. 5,
2007/0150515 Al 6/2007 Brave et al. 2012, 16 pages. _ _ _
2007/0156669 Al 7/2007 Marchisio et al. U.S. Appl. No. 11/649,098, Non-Final Office Action mailed on Jul.
2007/0208712 Al 9/2007 Krishnaprasad et al. 24, 2009, 12 pages.
2007/0208713 Al 9/2007 Krishnaprasad et al. U.S. Appl. No. 11/649,098, Non-Final Office Action mailed on Jul.
2007/0208714 Al 9/2007 Tu_re et al. 23, 2012, 15 pages.
2007/0208726 Al 9/2007 Krishnaprasad et al. U.S. Appl. No. 11/649,098, Restriction Requirement mailed on Mar.
2007/0208734 Al 9/2007 Koide ef al. 25, 2009, § pages.
2007/0208744 Al 9/2007 Krishnaprasad et al. US. Apnl. No. 11/680.510. Advisory Acti iled on Dec. |
2007/0208745 Al 9/2007 Ture et al. 5000 3pga'ges0' > Advisory Adtion matied on Dee. L.
2007/0208746 Al 9/2007 Koide et al. ’ ’ . . .
5007/0208755 Al 0/2007 Bhatkar ef al. U.S. Appl. No. 11/680,510, Advisory Action mailed on Aug. 18,
2007/0209080 Al 9/2007 Ture et al. 2010, 3 pages. _ _ _
2007/0214118 Al 9/2007 Schoen et al. U.S. Appl. No. 11/680,510, Final Office Action mailed on Sep. 18,
2007/0214129 Al 9/2007 Ture et al. 2009, 10 pages.
2007/0220037 Al 9/2007 Srivastava et al. U.S. Appl. No. 11/680,510, Final Office Action mailed on Jun. 21,
2007/0220268 Al 9/2007 Krishnaprasad et al. 2010, 13 pages.
2007/0226695 Al 9/2007 Krishnaprasad et al. U.S. Appl. No. 11/680,510, Non-Final Office Action mailed on Jan.
2007/0250486 Al 10/2007 Liao et al. 12, 2010, 10 pages.
2007/0276801 Al 11/2007 Lawrence et al. U.S. Appl. No. 11/680,510, Non-Final Office Action mailed on Apr.
2007/0283425 Al 12/2007 Ture et al. 2, 2009, 15 pages.

US 9,467,437 B2
Page 4

(56) References Cited
OTHER PUBLICATIONS

U.S. Appl. No. 11/680,510, Notice of Allowance mailed on Apr. 14,
2011, 8 pages.

U.S. Appl. No. 11/680,530, Advisory Action mailed on Sep. 8, 2010,
3 pages.

U.S. Appl. No. 11/680,530, Final Office Action mailed on Jul. 12,
2010, 24 pages.

U.S. Appl. No. 11/680,530, Final Office Action mailed on Oct. 28,
2011, 32 pages.

U.S. Appl. No. 11/680,530, Non-Final Office Action mailed onMar.
10, 2010, 25 pages.

U.S. Appl. No. 11/680, 530, Non-Final Office Action mailed onJul.
6, 2011, 28 pages.

U.S. Appl. No. 11/680,530, Notice of Allowance mailed on Mar. 4,
2015, 18 pages.

U.S. Appl. No. 11/680,530, Notice of Allowance mailed on Aug. 23,
2013, 22 pages.

U.S. Appl. No. 11/680,530, Notice of Allowance mailed on Jul. 1,
2015, 9 pages.

U.S. Appl. No. 11/680,544, Advisory Action mailed on Jan. 13,
2012, 3 pages.

U.S. Appl. No. 11/680,544, Final Office Action mailed on Jul. 19,
2010, 38 pages.

U.S. Appl. No. 11/680,544, Final Office Action mailed on Oct. 27,
2011, 51 pages.

U.S. Appl. No. 11/680,544, Non-Final Office Action mailed on Jan.
15, 2014, 27 pages.

U.S. Appl. No. 11/680,544, Non-Final Office Action mailed on Mar.
16, 2010, 30 pages.

U.S. Appl. No. 11/680,544, Non-Final Office Action mailed onJul.
7, 2011, 38 pages.

U.S. Appl. No. 11/680,544, Notice of Allowance mailed on Jun. 25,
2014, 16 pages.

U.S. Appl. No. 11/680,544, Notice of Allowance mailed on Sep. 3,
2013, 21 pages.

U.S. Appl. No. 11/680,545, Final Office Action mailed on Jul. 19,
2010, 33 pages.

U.S. Appl. No. 11/680,545, Final Office Action mailed on Oct. 26,
2011, 35 pages.

U.S. Appl. No. 11/680,545, Non-Final Office Action mailed onMar.
17, 2010, 27 pages.

U.S. Appl. No. 11/680,545, Non-Final Office Action mailed onJul.
7, 2011, 29 pages.

U.S. Appl. No. 11/680,545, Notice of Allowance mailed on Aug. 30,
2013, 20 pages.

U.S. Appl. No. 11/680,548, Advisory Action mailed on Jun. 16,
2011, 2 pages.

U.S. Appl. No. 11/680,548, Advisory Action mailed on Jan. 4, 2010,
3 pages.

U.S. Appl. No. 11/680,548, Advisory Action mailed on May 25,
2012, 3 pages.

U.S. Appl. No. 11/680,548, Final Office Action mailed on Oct. 13,
2009, 10 pages.

U.S. Appl. No. 11/680,548, Final Office Action mailed on Mar. 21,
2012, 12 pages.

U.S. Appl. No. 11/680,548, Final Office Action mailed on Apr. 13,
2011, 12 pages.

U.S. Appl. No. 11/680,548, Final Office Action mailed on Aug. 25,
2010, 12 pages.

U.S. Appl. No. 11/680,548, Non-Final Office Action mailed on Mar.
15, 2010, 11 pages.

U.S. Appl. No. 11/680,548, Non-Final Office Action mailed on Aug.
24, 2011, 11 pages.

U.S. Appl. No. 11/680,548, Non-Final Office Action mailed on Apr.
6, 2009, 13 pages.

U.S. Appl. No. 11/680,548, Notice of Allowance mailed on Dec. 28,
2012, 20 pages.

U.S. Appl. No. 11/680,550, Advisory Action mailed on Apr. 2, 2010,
3 pages.

U.S. Appl. No. 11/680,550, Final Office Action mailed on Jan. 8,
2010, 13 pages.

U.S. Appl. No. 11/680,550, Non-Final Office Action mailed on Feb.
20, 2009, 11 pages.

U.S. Appl. No. 11/680,550, Non-Final Office Action mailed on Jul.
8, 2009, 12 pages.

U.S. Appl. No. 11/680,550, Non-Final Office Action mailed on Jun.
22, 2010, 13 pages.

U.S. Appl. No. 11/680,550, Notice of Allowance mailed on Jan. 4,
2011, 8 pages.

U.S. Appl. No. 11/680,556, Advisory Action mailed on Sep. 23,
2009, 3 pages.

U.S. Appl. No. 11/680,556, Final Office Action mailed on Jul. 9,
2009, 11 pages.

U.S. Appl. No. 11/680,556, Final Office Action mailed on Dec. 22,
2010, 16 pages.

U.S. Appl. No. 11/680,556, Non-Final Office Action mailed on Jan.
19, 2010, 11 pages.

U.S. Appl. No. 11/680,556, Non-Final Office Action mailed on Jul.
9, 2010, 12 pages.

U.S. Appl. No. 11/680,556, Non-Final Office Action mailed on Oct.
24, 2013, 13 pages.

U.S. Appl. No. 11/680,556, Non-Final Office Action mailed on Jul.
6, 2011, 17 pages.

U.S. Appl. No. 11/680,556, Non-Final Office Action mailed on Feb.
25, 2009, 7 pages.

U.S. Appl. No. 11/680,556, Notice of Allowance mailed on Jun. 18,
2014, 15 pages.

U.S. Appl. No. 11/680,556, Notice of Allowance mailed on Nov. 17,
2011, 9 pages.

U.S. Appl. No. 11/680,558, Advisory Action mailed on Dec. 17,
2009, 3 pages.

U.S. Appl. No. 11/680,558, Advisory Action mailed on Aug. 18,
2010, 3 pages.

U.S. Appl. No. 11/680,558, Advisory Action mailed on Aug. 28,
2013, 3 pages.

U.S. Appl. No. 11/680,558, Final Office Action mailed on Jul. 8,
2010, 12 pages.

U.S. Appl. No. 11/680,558, Final Office Action mailed on Sep. 12,
2011, 12 pages.

U.S. Appl. No. 11/680,558, Final Office Action mailed on Oct. 9,
2009, 15 pages.

U.S. Appl. No. 11/680,558, Final Office Action mailed on Aug. 22,
2014, 19 pages.

U.S. Appl. No. 11/680,558, Final Office Action mailed on Jun. 21,
2013, 19 pages.

U.S. Appl. No. 11/680,558, Final Office Action mailed on Jul. 9,
2015, 23 pages.

U.S. Appl. No. 11/680,558, Non-Final Office Action mailed on Apr.
26, 2011, 11 pages.

U.S. Appl. No. 11/680,558, Non-Final Office Action mailed on Feb.
17, 2010, 15 pages.

U.S. Appl. No. 11/680,558, Non-Final Office Actionmailed on Apr.
14, 2009, 15 pages.

U.S. Appl. No. 11/680,558, Non-Final Office Action mailed on Dec.
21, 2012, 20 pages.

U.S. Appl. No. 11/680,558, Non-Final Office Action mailed on Jan.
23, 2015, 22 pages.

U.S. Appl. No. 11/680,558, Non-Final Office Action mailed on Jan.
6, 2014, 24 pages.

U.S. Appl. No. 11/680,559, Advisory Action mailed on Jan. 28,
2011, 3 pages.

U.S. Appl. No. 11/680,559, Advisory Action mailed on Nov. 14,
2011, 3 pages.

U.S. Appl. No. 11/680,559, Advisory Action mailed on May 19,
2010, 3 pages.

U.S. Appl. No. 11/680,559, Advisory Action mailed on Sep. 11,
2009, 3 pages.

U.S. Appl. No. 11/680,559, Final Office Action mailed on Mar. 18,
2010, 19 pages.

U.S. Appl. No. 11/680,559, Final Office Action mailed on Jul. 8,
2009, 21 pages.

US 9,467,437 B2
Page 5

(56) References Cited
OTHER PUBLICATIONS

U.S. Appl. No. 11/680,559, Final Office Action mailed on Nov. 22,
2010, 23 pages.

U.S. Appl. No. 11/680,559, Final Office Action mailed on Aug. 29,
2011, 35 pages.

U.S. Appl. No. 11/680,559, Non-Final Office mailed on Dec. 8,
2008, 34 pages.

U.S. Appl. No. 11/680,559, Non-Final Office Action mailed on Oct.
28, 2009, 18 pages.

U.S. Appl. No. 11/680,559, Non-Final Office Action mailed on Jun.
23, 2010, 19 pages.

U.S. Appl. No. 11/680,559, Non-Final Office Action mailed on Mar.
24, 2011, 25 pages.

U.S. Appl. No. 11/680,559, Notice of Allowance mailed on Mar. 6,
2012, 13 pages.

U.S. Appl. No. 11/680,570, Advisory Action mailed on Nov. 8,
2010, 3 pages.

U.S. Appl. No. 11/680,570, Advisory Action mailed on Dec. 17,
2009, 3 pages.

U.S. Appl. No. 11/680,570, Final Office Action mailed on Sep. 21,
2010, 12 pages.

U.S. Appl. No. 11/680,570, Final Office Action mailed on Oct. 9,
2009, 13 pages.

U.S. Appl. No. 11/680,570, Non-Final Office Action mailed on May
14, 2010, 11 pages.

U.S. Appl. No. 11/680,570, Non-Final Office Action mailed onApr.
24, 2009, 17 pages.

U.S. Appl. No. 11/680,570, Notice of Allowance mailed on Jun. 8,
2011, 11 pages.

U.S. Appl. No. 11/680,571, Advisory Action mailed on Jan. 27,
2011, 2 pages.

U.S. Appl. No. 11/680,571, Advisory Action mailed on Sep. 21,
2011, 2 pages.

U.S. Appl. No. 11/680,571, Advisory Action mailed on Jun. 27,
2012, 4 pages.

U.S. Appl. No. 11/680,571, Final Office Action mailed on Nov. 24,
2010, 10 pages.

U.S. Appl. No. 11/680,571, Final Office Action mailed on Jul. 13,
2011, 11 pages.

U.S. Appl. No. 11/680,571, Final Office Action mailed on Mar. 29,
2012, 13 pages.

U.S. Appl. No. 11/680,571, Non-Final Office Action mailed on Aug.
11, 2010, 11 pages.

U.S. Appl. No. 11/680,571, Non-Final Office Action mailed on Dec.
5, 2011, 9 pages.

U.S. Appl. No. 11/680,571, Non-Final Office Action mailed on Mar.
28, 2011, 9 pages.

U.S. Appl. No. 11/680,571, Notice of Allowance mailed on Aug. 15,
2012, 12 pages.

U.S. Appl. No. 11/737,091, Advisory Action mailed on Dec. 23,
2009, 3 pages.

U.S. Appl. No. 11/737,091, Final Office Action mailed onOct. 16,
2009, 9 pages.

U.S. Appl. No. 11/737,091, Non-Final Office Action mailed onApr.
9, 2009, 9 pages.

U.S. Appl. No. 11/737,091, Notice of Allowance mailed on Feb. 25,
2010, 4 pages.

U.S. Appl. No. 11/769,245, Advisory Action mailed on Sep. 13,
2010, 3 pages.

U.S. Appl. No. 11/769,245, Final Office Action mailed on Jul. 12,
2010, 10 pages.

U.S. Appl. No. 11/769,245, Non-Final Office Action mailed on Nov.
23, 2010, 10 pages.

U.S. Appl. No. 11/769,245, Non-Final Office Action mailed on Mar.
5, 2010, 9 pages.

U.S. Appl. No. 11/769,245, Notice of Allowance mailed on May 23,
2011, 8 pages.

U.S. Appl. No. 11/770,011, Advisory Action mailed on Jun. 14,
2010, 3 pages.

U.S. Appl. No. 11/770,011, Advisory Action mailed on Jun. 17,
2011, 4 pages.

U.S. Appl. No. 11/770,011, Final Office Action mailed on Apr. 14,
2011, 26 pages.

U.S. Appl. No. 11/770,011, Final Office Action mailed on Apr. 1,
2010, 28 pages.

U.S. Appl. No. 11/770,011, Non-Final Office Action mailed on Jan.
3, 2011, 25 pages.

U.S. Appl. No. 11/770,011, Non-Final Office Action mailed on Jul.
21, 2010, 25 pages.

U.S. Appl. No. 11/770,011, Non-Final Office Action mailed on Sep.
28, 2009, 31 pages.

U.S. Appl. No. 11/770,011, Notice of Allowance mailed on Sep. 5,
2012, 12 pages.

U.S. Appl. No. 12/751,268, Non-Final Office Action mailed on Nov.
15, 2010, 7 pages.

U.S. Appl. No. 12/751,268, Notice of Allowance mailed on Feb. 22,
2011, 9 pages.

U.S. Appl. No. 13/079,434, Non-Final Office Action mailed on Dec.
28, 2011, 8 pages.

U.S. Appl. No. 13/079,434, Notice of Allowance mailed on Sep. 4,
2012, 26 pages.

U.S. Appl. No. 13/110,461, Non-Final Office Action mailed on Dec.
13, 2011, 7 pages.

U.S. Appl. No. 13/110,461, Notice of Allowance mailed on Apr. 3,
2012, 22 pages.

U.S. Appl. No. 13/169,688, Non-Final Office Action mailed onJun.
21, 2012, 12 pages.

U.S. Appl. No. 13/169,688, Notice of Allowance mailed on Nov. 27,
2012, 6 pages.

U.S. Appl. No. 13/213,422, Advisory Action mailed on Feb. 7,
2013, 3 pages.

U.S. Appl. No. 13/213,422, Final Office Action mailed on Oct. 15,
2015, 19 pages.

U.S. Appl. No. 13/213,422, Final Office Action mailed on Nov. 23,
2012, 26 pages.

U.S. Appl. No. 13/213,422, Non-Final Office Action mailed on Jul.
18, 2013, 19 pages.

U.S. Appl. No. 13/213,422, Non-Final Office Action mailed on Mar.
19, 2015, 18 pages.

U.S. Appl. No. 13/213,422, Non-Final Office Action mailed onJun.
8, 2012, 23 pages.

U.S. Appl. No. 13/213,422, Notice of Allowance mailed on Dec. 26,
2013, 13 pages.

U.S. Appl. No. 13/483,958, Non-Final Office Action mailed on Mar.
22, 2013, 12 pages.

U.S. Appl. No. 13/483,958, Non-Final Office Action mailed on Nov.
21, 2012, 26 pages.

U.S. Appl. No. 13/483,958, Notice of Allowance mailed on Jul. 24,
2013, 9 pages.

U.S. Appl. No. 13/536,488, Notice of Allowance mailed on Jul. 31,
2013, 10 pages.

U.S. Appl. No. 13/539,622, Notice of Allowance mailed on Aug. 28,
2013, 10 pages.

U.S. Appl. No. 13/676,592, Non-Final Office Action mailed on Jul.
16, 2013, 18 pages.

U.S. Appl. No. 13/676,592, Notice of Allowance mailed on Nov. 7,
2013, 17 pages.

U.S. Appl. No. 13/676,592, Notice of Allowance mailed on Dec. 23,
2013, 9 pages.

U.S. Appl. No. 13/868,069, Final Office Action mailed on Nov. 18,
2015, 18 pages.

U.S. Appl. No. 13/868,069, Non-Final Office Actionmailed on Jun.
4, 2015, 20 pages.

U.S. Appl. No. 14/060,635, Final Office Action mailed on Nov. 21,
2014, 13 pages.

U.S. Appl. No. 14/060,635, Non-Final Office Action mailed on Jun.
5, 2014, 13 pages.

U.S. Appl. No. 14/060,635, Notice of Allowability mailed on Jun.
1, 2015, 2 pages.

U.S. Appl. No. 14/060,635, Notice of Allowance mailed on Mar. 6,
2015, 9 pages.

US 9,467,437 B2
Page 6

(56) References Cited
OTHER PUBLICATIONS

U.S. Appl. No. 14/144,315, Notice of Allowance mailed on Sep. 23,
2015, 23 pages.

Alonso et al., Oracle Corporation, Oracle Secure Enterprise Search
10g, An Oracle Technical White Paper, Oracle Corp., Redwood
Shores, CA, US, Mar. 2006, pp. 1-20.

Battat et al., Oracle Corporation, Oracle Secure Enterprise Search
10g, One Search Across Your Enterprise Repositories, Oracle Corp.,
Redwood Shores, CA, US, Mar. 2006, pp. 1-10.

Booth et al., Web Services Architecture, W3C, Table of Contents
and Section 3.4.2.2., Retrieved from the Internet: URL: http://www.
w3.org/TR/ws-arch/, Feb. 2004, 6 pages.

Bootstrep, Dates, 2006, 1 page.

Briand et al., Chapter 7: Deploying Content, Print ISBN 978-1-
59059-528-2; Online ISBN 978-1-4302-0041-3, Publisher A-Press,
Springer, 2005, pp. 117-135.

Computeruser, Definition of ‘Crawler’, Retrieved from the Internet:
URL: www.computeruser.com, Sep. 21, 2009, 1 page.

Cyran, Oracle Secure Enterprise Search, Administrator’s Guide,
10g Release 1 (10.1.6) B 192002-02, Mar. 2006, 136 pages.
Czerwinski et al., An architecture for a secure service discovery
service, Published in: Proceeding MobiCom *99 Proceedings of the
Sth annual ACM/IEEE international conference on Mobile comput-
ing and networking, 1999, pp. 24-35.

Donghong et al., Chinese Language IR based on Term Extraction,
Proceedings of the Third NTCIR Workshop, National Institute of
Informatics, 2003, pp. 1-3.

Hawking et al., Efficient and Flexible Search Using Test and
Metadata, CSIRO Mathematical and Information Sciences Techni-
cal Report 2000/83, May 2000, 13 pages.

Huang et al., Non-detrimental Web application security scanning,
Software Reliability Engineering, ISSRE 2004. 15th International
Symposium, Nov. 2-5, 2004, pp. 219-230.

Huang et al., Web Application Security Assessment by Fault Injec-
tion and Behavior Monitoring, WWW 2003, Proceedings of the
12th International Conference on World Wide Web, May 2003, pp.
148-159.

Larkey et al., Acrophile: An Automated Acronym Extractor and
Server, Department of Computer Science, University of Massachu-
setts, 2000, pp. 205-214.

Lee et al., An Enterprise Intelligence System Integrating WWW and
Intranet Resource, Research Issues on Data Engineering: Informa-
tion Technology for Virtual Enterprises, 1999, 8 pages.

Okazaki, Building an Abbreviation Dictionary Using a Term Rec-
ognition Approach, Bioinformatics, vol. 22, Issue 24, Dec. 2006, pp.
3089-3095.

Okazaki, Clustering Acronyms in Biomedical Text for Disambigu-
ation, Graduate School of Information Science and Technology, the
University of Tokyo, 113-8656, Tokyo, Japan; National Centre for
Text Mining School of Informatics, University of Manchester, PO
Box 88, M60 1QD, Manchester, United Kingdom, 2006, pp. 959-
962.

Oracle Corporation, Oracle Database 10g, Oracle High Availability,
Oracle Corp., Redwood Shores, CA, US, Sep. 2006, pp. 1-12.
Song et al., An Application of Extended Stimulated Annealing
Algorithm to Generate the Learning Data Set for Speech Recogni-
tion System, Copyright 2001, 2001, S pages.

Sun, The Java Tutorials, Inheritance, A Sun Developer Network
Site, Retrieved from the Internet: URL: http://java.sun.com/docs/
books/tutorial/java/landl/subclasses.html, 1995, pp. 1-5.

Terada et al., Automatic Expansion of Abbreviation by Using
Context and Character Information, Department of Computer Sci-
ence, Aug. 9, 2002, pp. 1-17.

Terada et al., Automatic expansion of abbreviations by using context
and character information, Information Processing and Manage-
ment: an International Journal, vol. 40, issue 1, Jan. 1, 2004, pp.
31-45.

Xu et al, Using SVM to Extract Acronyms from Text, Soft
Computing, vol. 11, Apr. 20, 2006, pp. 369-373.

Yahalom et al., Trust relationships in secure systems—a distributed
authentication perspective, Published in: Research in Security and
Privacy, 1993. Proceedings., 1993 IEEE Computer Society Sym-
posium on Date of Conference, May 24-26, 1993, pp. 150-164.

* cited by examiner

US 9,467,437 B2

Sheet 1 of 27

Oct. 11, 2016

U.S. Patent

104

<

i
H

laver

Query

%o
& O
[N

o'y

193]

g

»\3\33\«\\
o
[~
[

,,,..
g %
£
i
w Sl Gu
i £
[‘& [2] nhw
c e §
< [&
by
— 4
b
x5
@i gl 8 5
%, %‘w hil & o1 @
{15 5 2
P 2%
2EAES [F
LR I S
I EHES ©o
i
\mw IBUCIELSH
« s
i yeag
3 2 “ 3
4 S I
GEET =
2
ww PG
M.. .o
e 3§
gy R EL R

FiG. 2

U.S. Patent Oct. 11, 2016 Sheet 2 of 27 US 9,467,437 B2

KRN
\\
H
E\ fagia
A
Seyralt
QIS Al Query Layer 308
SES 307 {qusry Loyer 208
Nafdsie Faderand Duedy
asotigr 28
SREHGID AT
PE- T Sy SUID \ Auniasivn
{384
Crawie:

— . i
§ carrar™ Sy witn
Othnr Dncsnidns

A08 ~ SES e

Query [N
i T |) e e i
D Uiser Add Scourity Filter —
[Reoyl i {

Custom Apphoatt 442 Resuits ¥ 404

Prane Result, Thange URL

f

Target Application 802

Eer

L)

£
555./, ”""-:ﬂ/‘/

E>Y
s
g
=
&
24
0
<
&
5
1)
W
5
B

o
%S
3
s
3
o
e
1
T
© S}
el
2
5 &
o
g7
vy ¥
i
b
L
;
¢
I
&
-

R
1
;

Y

(A
N

J

™ Qustom Cra

Modily display URL /

£
5
o
i
@
i
%
&
w
4
{

o
i
<
s
o
x 13
b3
b
o
o
o

o
i G

FIG. 5

US 9,467,437 B2

Sheet 3 of 27

Oct. 11, 2016

U.S. Patent

- e i s s o
t s
t ?
: 3
oy 3
o t
Gyt 5 rgre e tacose
&z ¢ \\ f/ \
G ! i 3
53 [§ Vo
oy AR Ay s H pu M
[~ A f H Py et
% ony U ; 4 | B
Wy MMW € ' d \ﬂ‘. \
2 yed 3 e i Pl /
s Y20 7y A : it
oy 95 Y » P e .mw &
B2V 2 ; o, 63 n. >
Y \ = ' A ISR
o b by
£ Lo w3 ; ol 5
G opgn ! - - s Mw, 3 W e 5 &
& WG i S s ‘% wA
P B G § ; & O il U
& LW d oK oogw
hoend 4) ' o~ i @ %)
2 & : s agmeraerereseeseea,
- v . Y Yt G,
(a0} ¢ §oa " / s oo
Laid i A3 g M . 1 g
L o e 4 o w(w ¥ £ Uy
o o 2 2 oa 7
« 9% % R o] {z
RARS Rt~] M H <3 ot
s B 8 ¢ ﬂ i &
ke % »oo FE . 2 !
$iae /1 @ PN
o oo 2 ; 3.
momso ok

S8

oy
" 41
i
b
i
|
v

1 e#
2 Vs
e b }

g.m\« $ w i vy M o
cioo e g i3
¥ w ioadr W0 ~ ! &

b s “ b
W;\.\skx\\\._ss\\kﬁ > \“ i :)
N 3 ‘ w, / \\ ; %
23 t . 3 B
N S : £
P 8 m : 4)
bmoa g : ; £
IS
P g s s v
R m SN O et z
i ittty

MM\ \\ wvrer ww

43

5o o2 D

/ - =

£

2]

¢
NN

¥

FIG. 7

3
3

o
bl

US 9,467,437 B2

Sheet 4 of 27

Oct. 11, 2016

U.S. Patent

AR AN A S
- S,
N e
4
Tt s i m s ST

s
7
AT
\\ \
. o / . B
% b & e, .
% 3 & .
o, & m/ N o]
nw‘mw o o <
Py 2
& [o% a@ \ L=
s =] R g £
8 5w o 5 | £3 _
o mw M\M a ® m w P M,u_w P \
Y @ I
oy o
;! Y o -\ EEBE
W ey Pl ot D / aFgn /.
........................ 5 il [BN g
4 s S
/ 300N
& @ - N
9] & -
[5

vt It ps s b et o,

L) e

v

N e e
~
‘-/

v
% i
’
.

BOO -,

/ Y .
{ i
M Aauw V4 ! ; tA ;
j <7 R 1 S :
i 72 £res \ 7 t : & |
L2 BN E L BE
“ n&. N N o3 m I3 : e H
\\\\.f:\\v.\ﬂb i W e w " e B 4
} % * § : PB ;
{ : N : b ¢
Y \ N, \ : t 43 ¥
f \~ \. 5 w Wrn- 3
RS S [;
i } .mu H
v s v i
i e L3
! o~ b
o te B I IV v i
[i o ﬂmw

I

9
el

LA
4
g

500G}

{1

FiG. 10

Suhscribed Sourcaes

US 9,467,437 B2

Sheet 5 of 27

Oct. 11, 2016

U.S. Patent

N

N

Rt -
A nn e

7
N
2 TN

=

5
¥
3
1
s
H
3
§
§
¥

By s 00 st € an 50 20 o mnr o 2000 N |

T SO

N
5
5
3

a
o’,"

4
RS
TN

A
AN
}
.-*//.
104

SE
\\\
Y

12318

S Midt
1208
i
Agent
g

.,.\\\

I

ey
e
24
i

A

o

/
|
\
w .
eyl B T
; <ot

32
ail

3
1
ent Jave

p

wwEMw
;m
e
ga

FiG. 11

S

!

e
B
E

Vg
b
T

//
\\
QC8Em
'S¢

LA AR A Ry A e A s G S P TR e 95 SR e e e e RE e e v e W g
B . b T R R RN

e H 4 e
. : 4
: /z:x\
RSN UIORPUPRPSIION. JURG e en e on 0 e om0 o e 50 0 v 8 3.
g e e o e o N -
3 | 3
* %v gt A t
soRy i K s
v O . 3
el

§ B R 5
: / 1
t H
§ [
& 3 b
Y § w.\w kS

2 e
[B SN w
Pl ooy o H
i e s " a5 3
s A, =]
P [! g 2 foonss et ‘
s, I vees " > R 2
tarppr L) 154 s M
7 B Bl
. s AR AR v '
o e —— PSR G ool
o 7 2 B R
- R B Wi B
% r? TR S IR B~ N
£ ol b il Ay BE e
5] [[I T AR 4N
P s 3
1 %
1 i p om0 5 0 T 2

FIiG. 12

U.S. Patent Oct. 11, 2016 Sheet 6 of 27 US 9,467,437 B2

Ugerlogin T
- =B authenticates User e
Text index |
7 : 1 AR
{ \-jww..ww“/} N §Gw & ’S}
| -
P cordaxt i /// }
- {Query me
N B
/./
Quary Application Guery Authorization
USRI 15
i N ‘”*'\‘} Moduie e
iﬁg:f‘ RRE)
l [N VUV UUUUUN U UUUN PUUUU Ot
o~ 1408
AN
Crawd a group of documents across an enterprise o
4 AN <
14QE
H
A
Store a copy of at least a portion of each crawled
gdocument and index each stored document 1404
AT
¥
Roranie 1 b {
Receive a query from a user
biain security atiribule values determinad for
user when authorized at jogin tme 1408
4
Append rafevant securily attributes o query and send
guery to application 1440
i
\g,-
Rpoal e resulls from applcation based on user seourity
attribiugtes and transmit {o user as query resulls 1412

FIG. 14

US 9,467,437 B2

o
g
24
o

Sheet 7 of 27

Oct. 11, 2016

., m..nw .J o
wa 1) ; s
“ - P Vw M.M e

n i
on
p
he
5
i

..... 5 s B s

Lo o] £ @

[hodt N |» T
;amv =3 F
£

+.
Y
L%

ay
e with g

Ty service

o

£
¥
H
4
i

eotory service us

w5 o o A
N 5]
s £ o &
o o

1
Anthenticate

ionioasaeto
o communics

sctive dire
%
§

i
FIG. 15

\.\\E\V Q *

it
on across the enterprise

H
H

back into the sppropriate di
ity
e

o)
ulicati
.
&
3
biain associa

a3
.
bl

[&%

the identily mforma

i G "
AN 0 oo
T e it 4
e U -3 ‘MW D P
[l 23 7g FE
pregin g u/ g c.v
2 £ G i
o R Jék) 4 = Y o
. %] 5] O g
oy e ot e 0h
o Z 5 P
e [73 B >
33 P oA w.....
L3 k. e oW
@ & R
ﬁ; o~ (25

U.S. Patent

FIG. 16

US 9,467,437 B2

A % W 5
. 45 - 7
o L 2 S :
(% S5 7 PS4 m\w@ €9
B % & iy A
w G dn G ke 23 g
: 3o om o %8 g
A Lo EEE o h o

[#

oo

w G 7 \wsnnsnsnsnnsossrles -,

Y

Confirm?

Sheet 8 of 27

Oct. 11, 2016

U.S. Patent

Focar ™ % 42
: maw s T R —
ks P i
£ 3 5 ‘
g <1l @38
2y W& ,
uL o & 45
o i G5
3 Y&
0
o,
S ——)
o B @ L& reeeeeessoeecrmm 58
B Rl -V R v “ <
o < RN o B 3 o, 5
AEg p e
ah o g H o o o B _ 3 -
s o2 fn 34 G : g
< Pead l.\l(l)\)o\\(\()‘)\\z\(\\.w S I3
//.__. .»Mhu riny, £
/ S =,
// ° w
e E oo
o)

reaie

o
¥

h

Register

US 9,467,437 B2

Sheet 9 of 27

Oct. 11, 2016

U.S. Patent

6L 'Oid

{ pen VA [goues)

uonduosag

{‘pauyep wmﬁncm on)

SUBN

1817 90IN0S PRULSCI-IoSN

(_eN_ H(teouen)

JOQUINU 3SBD 1881) asen isa),
equInu 1iod 1101 od
promssed IoJRASILIUDY sty PIOMSSE
SiLlEY 1SOH 0LZ1unsp 150H

SWIBY JOIRNSIUNLPY upejoio] 1ESN T HILPY

~ uchduose(ERTETN Sie |
sialeweley

odAy oo4 edA] 80inog

{604 pue s1oBiayy] eweN 20.n0g
| 4218 | 80IN0S pauUye(]-i1os] vjess

SecIoS < SWOH |

- saysneig _ EEIGIENRIN _mmw,.saw_ EIETETS)

SBUIFSS 180010 /[ipTess/|awon/

yoseeg esudieiuyg a1n0eg ,JTOVHO

> 061

U.S. Patent Oct. 11, 2016 Sheet 10 of 27 US 9,467,437 B2

2000
P

ORACLE® Secure Enterprise Search Search Help Logout

/ HomeVSearch Global Seftinas

~

General[Sources|Schedules [Statistics
Home » Sourees
Create User-Defined Source ; Step 2 : Authorization

General (Create & customize) CanceD(Create)
Sowrce Name Contracts
Source Type Oracle E-Business

Z1Start Crawling Immediately
Crawhktime ACL Stamping

Authorization O No Access Controt List
@ ACLs Controlled by the Source
O Qracle Secure Enterprise Search ACL

{Select Name Type Formal Privilege |
{No data exists)

IType| User] (Add Another Row) ;

Authorization Manager (Get Parameters)
Configure an authorization manager plug-in, which can supply both a query
filter plug-in and result filter plug-in. To retrieve or update the list of plug-in
parameters, click the Get Parameters button on the right.
Plug-in Class Name :EBAuthzMgr

Jar File Name ebiz_plugins jar
{Plug-in Parameters -~ """7 """ oo Tmrm TR

™

{ Name Value Description ' |
20029 | DB User
DB Password
4 View Name
CiSecurity Attributes
{ Name Value |
2004< | alliowed user Gram
rasp Grant
role Grant
~ banned_user Deny

User-Defined Source List

Name Description
{No sources defined)

{Create & Customize} (CanceD(Create)

FIG. 20

US 9,467,437 B2

Sheet 11 of 27

Oct. 11, 2016

U.S. Patent

L¢ Old

064e

) THOAL ALY SIOPRERITOIF Touden ST “ vonszuoypy | COREORGONY | UAREINBYEY SETeg

fuag WISN CENNYE

sy 30

weg 4554

weig H3S0 QIO TV

amep, UEN

‘ SHNGLIY ATHRS

Mrp uczanddy) RN MAA
BE] 3 LIRLAOS OF BOMESES R IR B0
B OF QAR 0F SRSy c_Euw. OS] B0
B VORI DGO | Wioo Sy SAXNEIE LOWBPIRES L 150ujenty | jelpmixagpl 1 Bulg joeuved 80
Dy BREEN B

wrateRaeg upbnid
WYL PN U BRI, BIIOE K i AP WD SRNIARININILES O 1 pep] o0 130t soy S6ap 12 o Jef e

[

TR R A

“-Bnj Jos yreaz pwe vrlnjd 0gs Assnb i (04 Addns ued yowm ‘urlngd Jebeusi vogezimying Ue anbguocy

L

Bpizgiynz | swey seng vebid

sebenep Lopeoqng
(o sonioy pov §ix] sesng eddy;
[=iem mep b
] o, sdiy Fuz|paws)

114174

7

1y yoses; assrlisy emaes aei
sameg i Ag papoaLe) 1Y &
1801 DO SRR BN (3 MOQRELOWNY

Buicieeys 100 SR

Sy TR CUEry | CUe Ry | uoerpouny | GSHEIUSTTY UOHENMHIRTROROL

() (5553)

SIAEHU0S (00IN0E PAIBCISS] 1O

TITG - TR} e

s [Tompaass [seog | pRn

HIEEs @EQ:\

PR G RS

yoseog asudiojus axmveg BFLIYRIO

Z0le

US 9,467,437 B2

Sheet 12 of 27

Oct. 11, 2016

U.S. Patent

4

7

i
bl

|

8

2

s
£

B
(o

U.S. Patent Oct. 11, 2016 Sheet 13 of 27 US 9,467,437 B2

i 230¢
User G
v -l
.»"n Wfﬂ
& URLs
o
{
Query Laysr i
Y EYET aga)
7N
Textindex |
:té\:{%v
‘,v‘\
f,
}/
//’ Crawler
4
Appiication
3308
Fax
FIG. 23
o 2408
o N N \
Crawt a group of documents across an snlerprise g ag \
,&@u.\" {)
N
5‘«‘(‘@ a copy of af {east g portion of each grawiled
oouIent and .e}« gach slored document 2404
i
Receive a query from a user 408
H
N

Call back ints the respective gpplication with the appropriate
crawt document, meladata, and user information o8

e ors

Receive from the ap;}‘ a dyna\..% cally generated URL that is
accurgte for the guerying user in the present session 2440

FiG. 24

U.S. Patent Oct. 11, 2016 Sheet 14 of 27 US 9,467,437 B2

Crawi a8 group of documents across an enterprise 500

éu&w
AT

Store a copy of at least a portion of each crawied
ducumant and index ea:rt stored documern 2804

Recelve a query rom g user 2840

e
Pnd ﬁ
1 4

e
Ueterming whether the guery contains at least
one triggering word 2512
e
For each irigoering word, fransform the gquery into a URL
nchuding any n (cSS?’y’ ser, session, and security information

o acoess the appropriate enterprise content 2514

i)

Transmit any resuits returmned from the provider(s) to
the user as suggested content 2518

3
253
L]
o

Ay

Check paltes:
Malsh

ey the

ssults 2338

U.S. Patent Oct. 11, 2016 Sheet 15 of 27 US 9,467,437 B2

L fata
(‘_,?\}\.}

o
oo

<o

=1

Qz_ 2ry 2703 {,M.M/‘:
R

POV
S8

- S—

Thread -

s . PRy LA .«
sad Al e T e
1 o e e o3 vy a i3 (STOW
Triggerad (27423 - N
o B8 Provider Ny
Provider A Sl

FiG. 27

T
SR
/.,/""/ \\4\ 2 t:‘{..\ &
{ Query application 3
2802 ¥
Ho AR -
— SREE .
/ 5
kN

T ey N
Y HTML
mintehes SC AR

Gudry ?F:ZX&!’F‘:_,M.‘ o~
dsinal

SCURL AML resnit

2808 2814

FIG. 28

U.S. Patent Oct. 11, 2016 Sheet 16 of 27 US 9,467,437 B2

E3e]
3
3

- Advrucen Seaieh
o Saw
o L3Rk | growme Soures Giauss

ons oI ersrt
sdn.oaminds k. By

Seacch o Requigiions I A

v ARpeNa 'ff"'oo‘:(;mez‘: Hame ™ § "

Pandicoy Appeoral ittt ®
PSR E e s by B e RS ey gt vl dae e o dogiindingt wud 'f}g,%
oo

pyule cntor - 1 o~ Jun BT X3 - C anhad Lioks

‘ the Fiewadt Susiamer..eses Orasle Text for
K Sont, HHD U nesy s
E=Tatat
Dofing 3 template source for self-service souwrces o SOUD
30021 N
Bseessacaed Y
\
P
4 é
Oafine a fargel data repository without security credentials
NN A
2004
)
Allow an end-user to subscribe to the lempiste source
and enter user cradentials 3066
Creste 8 new user-subscribed source s
3063
!
¥
Generals an access conirol st for the end user to be
applied {o the user-subscribed source 3010
I3
N
Dynamicaily inherlt changes from the tempiate source o
the yser-subseonbed sourge for the next crawl 3042
)
N
Match the end user credentials with the template saurce
at -::ra‘q‘ ttime 30144
H
o
Periorm authentication for the crawt by by augmenting the end
user and source credentials with target reposiiories 3018

FIG. 30(a)

U.S. Patent Oct. 11, 2016 Sheet 17 of 27 US 9,467,437 B2

3050
v

& Cracle Entarprise Search Administration - Microsoft Internet Explorer TEE
File Edit View Favorites Tools Help 5
@Back-® - B B &[5 Search YrFavorites @ |2 S & L& ,
Address Bihtipfistach08 us.oracle.com:77 TT/searchiadminischedules/flipassfororand jsp IR Go Links ™
Coogle- ~ #Search Web © #615 blocked EOptions

| /Home|/Search/Global Settings

1134

General | Sources|Schedules] Statistics

Schedule : TempSchi -
Enter the credentials for the sources below

E-mail

Source Name User Name Password |
Oracle Mai sriram. k@oracle com

Table Information

Source Name Schema Password
Table1 SCOTT

Oracle Single Sign-On

Source Name User Name Password |
OF01 sriram.x krishnamurthy@e] Lo 1
HTTP Authenticstion

Specify the user name and password for host and realm for which
HTTP authenticaton is reguired.

Source Name _ Host Realm User Name Password |
Web Source? disun1711 datasett [U2 K- |
Web Sourced dlsun1710 dataset ud I L]
HTML Forms
Form Name Form Control Name Password |
Form Password [

{“Start) (Cancel} -
£Done @ Local intranet

FIG. 30(b)

U.S. Patent Oct. 11, 2016 Sheet 18 of 27 US 9,467,437 B2

. o 30
Specify that & source will use tfemporary passwords 1\
L 3 5\
i &
A3
Examing the source metadata at crawl time {o determing
wheiha»r the temporary password setting is selecied 3104
N
For lemporary password source, prompt the administrator
for the secunlly credentials 3108
e
Wrile the security oredentials to temporary storage
3488
b4
¥
Crawier reads securty aredentialg, then deletes these
credentials and any Hnk o those credentials as soon as no
longer neaded 3118
!
Nz
Crawiler felches gnd indexes the documents e
;3'3 'fa
3158

e
(5
]
i
<
o
%
192
g
v
Q
-
%
3
1]
w
@
D
Q
%
@
O
L
:’}
AN

SR o R

/

)
\

[#]
sy}
s
%
)
o
)
’m

Memaory or tamporary
disk storage

FiG. 31(b)}

US 9,467,437 B2

Sheet 19 of 27

Oct. 11, 2016

U.S. Patent

951 o
3)
&3 T @ “
o i s v
LT o .ﬁ.m. @ - PR M. N
. =2E S 24 -
AR s Vin e & & G .
S G B 153, & ot ¢
] g 7 I3 7 ¢
wEw @ Ed 6 ’ “
et oy W m&m, !
- 8 §
R | mamd B S o
o hoa j
e B wa H D
= £ 4
o @ @
0 w0 3
o © i
L Ve d LN s @
- S ,
i,
< e
Sl AN
Pant
o
et .

¥
of dat

Yo bemnre)

:.lww

.»';
I
Lo

soarch query string

S
Malch Link
Maich Al Wo
FiG. 32

rel
xt

o e e o 8]
& 3 y 3
e emnd

Recalve a search query
asuits with the original search o

o rules index o variations of the tokeniz

FiG. 33

[= i
. ! W o
175 & 9
0% . B
PR By Vool
% 5142 &
MWW -y N (.M ‘LK(» Y
A g 2 @
I 1. { o L pisd
3,) o
>0 0
3 e o
D, . 0.
Mok] e
3 . vﬁ £
in - i
] i
! o
m

U.S. Patent Oct. 11, 2016

Sheet 20 of 27 US 9,467,437 B2

— 34D
N WY WS
\
Obtain ssourity atiributes and values for each document and &
siore them info a tabie 3402
i
During indexing, pu rity aftribudes and values into & Text
index 3404
FIG. 34(a)
\
Recsive login information for a user from a query page ¢
|
Determine whether the user's security filter is fre A
2R
A
o Fresh Stale \g
Get the user authentic i*
st : s authorization informatic
3at the seounty filler from a
atthe Sbv}k‘f? filter from a fdentity Plug-in and Au m
e Phig-in, construct user ec;;riiy
fifter and store as SGE A
3412 47
"_!
\z oA
Construct completed Text query string by appending security
filtey te ,?w qusry string to find relevant documents 3448
!
<
Run the query o
3448

IG. 34{b)

U.S. Patent Oct. 11, 2016 Sheet 21 of 27 US 9,467,437 B2

Fatoh documents {orawler), parse them, and stare link
informaticn into LINK {able.
!
N,
Create text index e
500
(,«wu\a’,«v
! \
. o J
4 Calculate inkscore for sach document by using different-host
finks 3502
i
Buckstize raw linkscore
2504
Dush hucketized inkscore into text index (MDATA section
‘«.\W 3506

FIG. 35

US 9,467,437 B2

Sheet 22 of 27

®
5 {5 poo
g oo iy

%
w«v m\W\s

» off

2
4
708

" ,..‘.\um mmsu MU Fie; o]
< Pt e - et » o Jod
SW @ o o 3 P | P
£ et

e
K
put

Oct. 11, 2016

U.S. Patent

-y

s rosulls from sources to broker

antarprise soun

& &
= i
3] P2 o B4 X
5 =5 p @
@ & - 2 3
o K =4
" o
0 { 7
A % m = a\w
i S = 2 %)
m & o & n @ e
CATEE 8 e8] 8 :
» 8 1 { %
[g” of? A a4 1 o 2 oo b
i \M\ £3 . »] S.OL &m 3] [53
3 M D [N B G s i 2
@ .] = o b 2 R
L £13 (o] peion 3009000 1 .Nm £3
MU 93] L. <5 o 2
m D [a3 4@
G e @ =
8 T @
a P
@ 2
5an o
@

iate query for varieus sources
nslated guery and normalized user identities

y
Regeive query from user to broker

5
)
e T e

30
rorey 1 {2
LA «h @ R
2 e o | |
23] o Te b i
145} o = o E2 G o
& nece & o : = 2
Lo 2 5 @ i @ a
2 0 o) — 24
8 L3 % R4 e o £ od
o feot .. (24 [Ao
> % Y £ b o @
w..w i = ot & 4 b2
e 7 @ b 2 %
’ o & @ £
5115 % g
ALy
B & £ B
o e wwer woeds woct. wtes denss wrwen wees r.w o1

4

R

{

371

3

U.S. Patent Oct. 11, 2016 Sheet 23 of 27

US 9,467,437 B2

o 800
X
Authenticals end user fo SES sysiem 5802 @
LU

Obiain user identity int

,ém

Receive guery from user fo broker

RIS AN,
H

s

Transiate query for various sources

&
Propagate ransiated query and 830 user identily
1o the varioys enterprise spurces a210
H
H
o
Recaive guery results rom sources to broker

-

-y 38 .
Consolidate resuld

FIG. 38

U.S. Patent Oct. 11, 2016 Sheet 24 of 27 US 9,467,437 B2

3¢ i 2GAN
1 < R
23802 §
T Emtarian T T T T T T e e e o T
. Enterprise SR,
{ SES 3904
i Crawier %%ﬂ;
) = 2 {
{ / \\ g
3 > - .
! e External
mnterprise i Enterprise) 4=+
\ arprisey nlerprise; Site
S DY Apo AT P agag
3 i
e 4000
Y
&
Define corpus poundary e
i 40602

|

agin erawhing YN,

7]

Sutarmatically store any arawled Unk outside the
boundary a8 @ suggesied link 4008

i)

Remove any suggestad link subssquently discoverad during the

craw! 1o be within the boundary 4008
Dedarming which of the suggested links to display © the user a
AR

FIG. 40

U.S. Patent Oct. 11, 2016 Sheet 25 of 27 US 9,467,437 B2

S140
et SR
\\
Selent atiributel{s) 1o be used o determine resuwll ranking, , . 2
o 4102 <

Raceive & search guery from g user

{
N

Run the query angd store guery resulls to a hit fist

core of each document in the hit list based on i
selactad attriouts(s)

T
[N
<
%
.
"
[
W

N
Dispiay the re-ranked query search resulls o the user

FIG. 41

U.S. Patent Oct. 11, 2016 Sheet 26 of 27 US 9,467,437 B2

FIG. 42

U.S. Patent Oct. 11, 2016 Sheet 27 of 27 US 9,467,437 B2

Storage Media

4392 4364 43038 4308

r‘"""““"". 3,.-—-—‘...,-" N e . i
Computar
Crutput Storage Readabie
=)E;‘{Q\ R ' b = St Miertio
PSS Devivels) Device{s) Device(s) Storage Media
Reader
Mo

% -
WLWMM 4324

; Processing
i Acceleration

R Y
4314 4318

Waorking
Mearmnory

FIG. 43

US 9,467,437 B2

1

FLEXIBLE AUTHENTICATION
FRAMEWORK

CROSS-REFERENCES TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 11/680,530 filed on Feb. 28, 2007, which is
hereby incorporated herein by reference.

U.S. patent application Ser. No. 11/680,530 claims prior-
ity to U.S. Provisional Patent Application Ser. No. 60/778,
151 filed on Mar. 1, 2006, U.S. Provisional Patent Applica-
tion Ser. No. 60/777,988 filed Mar. 1, 2006, and U.S.
Provisional Patent Application Ser. No. 60/800,737, filed
May 16, 2006, each of which is hereby incorporated herein
by reference.

This application also is related to the following U.S.
patent applications, each of which is hereby incorporated
herein by reference:

U.S. patent application Ser. No. 11/680,530, filed Feb. 28,
2007, entitled “FLEXIBLE AUTHENTICATION FRAME-
WORK;”

U.S. patent application Ser. No. 11/680,558, filed Feb. 28,
2007, entitled “FLEXIBLE AUTHORIZATION MODEL
FOR SECURE SEARCH;”

U.S. patent application Ser. No. 11/680,545, filed Feb. 28,
2007, entitled “SEARCH HIT URL MODIFICATION FOR
SECURE APPLICATION INTEGRATION;”

U.S. patent application Ser. No. 11/680,550, filed Feb. 28,
2007, entitled “SUGGESTED CONTENT WITH ATTRI-
BUTE PARAMETERIZATION;”

U.S. patent application Ser. No. 11/680,559, filed Feb. 28,
2007, entitled “PROPAGATING USER IDENTITIES IN A
SECURE FEDERATED SEARCH SYSTEM;”

U.S. patent application Ser. No. 11/680,571, filed Feb. 28,
2007, entitled “SECURE SEARCH PERFORMANCE
IMPROVEMENT;”

U.S. patent application Ser. No. 11/680,570, filed Feb. 28,
2007, entitled “SELF-SERVICE SOURCES FOR SECURE
SEARCH;”

U.S. patent application Ser. No. 11/680,544, filed Feb. 28,
2007, entitled “MINIMUM LIFESPAN CREDENTIALS
FOR CRAWLING DATA REPOSITORIES;” and

U.S. patent application Ser. No. 11/680,556, filed Feb. 28,
2007, entitled “METHOD FOR SUGGESTING WEB
LINKS AND ALTERNATE TERMS FOR MATCHING
SEARCH QUERIES;” and

U.S. patent application Ser. No. 11/680,510, filed Feb. 28,
2007, entitled “AUTO GENERATION OF SUGGESTED
LINKS IN A SEARCH SYSTEM.”

COPYRIGHT NOTICE

A portion of the disclosure of this patent document
contains material that is subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent document or the patent disclo-
sure as it appears in the Patent and Trademark Office patent
file or records, but otherwise reserves all copyright rights
whatsoever.

BACKGROUND OF THE INVENTION

The present invention relates generally to systems and
methods for locating and accessing electronic content, and
more particularly to systems and methods for enabling
secure querying across enterprise and other such systems.

10

15

20

25

30

35

40

45

50

55

60

65

2

A common approach to searching and indexing content,
particularly across the World Wide Web, is referred to as
“crawling.” In order to perform such crawling, a program,
script, or module known as a crawler or spider is used to
scan publicly available information across the Web. Several
search engines use crawling to provide links to data avail-
able across the Web, as well as to provide a synopsis of the
content available at those links so a user can make a
determination of the relevance of each of the links displayed
to a user in response to a user typing in a query, typically in
the form of keywords entered into a search box in a search
page or toolbar. Web crawlers typically create a copy of each
page touched by the crawling, such that a search engine later
can index the page copies in order to improve the perfor-
mance of subsequent searches. Indexing typically creates
keyword metadata, such as may be contained within a
meta-tag field of the copy of the page, which can be accessed
by search engines to more quickly make a determination of
the content of a page or site. A search engine then can search
the entire content of a page or simply search a keywords
field.

A crawler typically accepts as input an initial list of
Uniform Resource Locators (URLs) or hyperlinks, often
referred to as “seeds” in the crawling process, and examines
the content at each linked page to determine any URLs
present in that page. These URLs then are added to the “list”
to be crawled. By following each additional URL in the list,
the number of pages being indexed can grow exponentially.
Once a page is identified by a crawler, it will be indexed by
a search engine or other appropriate tool and then available
for querying or searching.

A limitation on crawling is that different data resources
have varying degrees and types of security and access
mechanisms. While crawlers can easily provide links to
public information, there presently is no way to access a
number of disparate systems, such as applications across an
enterprise, while ensuring only authorized access to data by
authenticated users. For example, a user might wish to
search for all information across an enterprise related to a
current project, whether that information is in data, email, or
file form. This would require accepting and tracking security
information for each system or application serving as a data
source of these types, such as an email system, a file
management system, a database management system, etc.
The crawler then would have to be programmed to be aware
of all the security requirements of each application or
source, be able to authorize and authenticate users, and
perform a variety of other tasks that drastically complicate
and slow down the crawling process.

The problem is exacerbated when attempting to crawl
enterprise applications, such as eBusiness or PEOPLE-
SOFT® applications, as these applications do not have
simple user role mapping but instead each have a unique
security model. Instead of having a single role (e.g., man-
ager, employee, or administrator) that defines the content
accessible to a user, such as may be controlled by username
and password, the enterprise application business compo-
nents can have a variety of different attributes that can
specify whether a particular user can see a particular action
or document, for example. Further, these attributes may
change dynamically such that the user can have access to
different content each time the user attempts to execute a
query or search. For example, a given document D1 might
be accessible to an employee E1, but might also be acces-
sible to each level above E1, such as E1’s project managers
PM1, PM2, etc. While the security must not only account for
this security hierarchy, it must account for the fact that

US 9,467,437 B2

3

people can move groups or levels in the hierarchy at any
time. These hierarchies are also not fixed based solely on
position with a company, for example, but can be project-
based where the members of a project can change continu-
ally. This results in what can be referred to as a dynamic
security hierarchy, wherein each user in the dynamic hier-
archy can have a unique set of security attributes that can
result in different content access at any time. Such dynamic
access is far too complicated to fit into any standard user role
model.

BRIEF SUMMARY OF THE INVENTION

Systems and methods in accordance with various embodi-
ments of the present invention can overcome these and other
deficiencies in existing search systems by providing a flex-
ible and extensible architecture that allows for authentica-
tion, authorization, secure enterprise search, and other such
functionality for an enterprise and other such systems. Such
an architecture can provide a simple Internet-like search
experience to users searching secure content inside (and
outside) the enterprise. Such an architecture can allow for
the crawling and searching of a variety or sources across an
enterprise, regardless of whether any of these sources con-
form to a conventional user role model. Such an architecture
can further allow for security attributes to be submitted at
query time, for example, in order to provide real-time secure
access to enterprise resources. Such an architecture can also
be used to provide suggested content and links that are
relevant to a user query, and can provide for limited lifetimes
for security attribute information. A user query also can be
transformed to provide for dynamic querying that provides
for a more current result list than can be obtained for static
queries.

In one embodiment, users requesting access to a secure
data source can be authenticated using a flexible and exten-
sible framework operable to accept user identification infor-
mation in an arbitrary format. When user identification
information is received from a user requesting access to a
secure data source, the information typically being received
at user login, the user can be validated against an identity
management system for the secure data source to which the
user is requesting access. There can be several secure data
sources across the enterprise which can each be associated
with a unique identity management system and can each
utilize different security attribute information in arbitrary
formats. If the user is validated, a callback can be made to
the identity management system for the appropriate secure
data source to obtain access information for the user, such as
current group, role, and/or project information for the user.
If the user cannot be validated, the user can be denied access
to the requested secure source. The framework can include
aplurality of application program interfaces (APIs) that each
allow the user to be authenticated against a different appli-
cation or secure data source.

In one embodiment, a user of a secure system is autho-
rized by obtaining security attribute values for an authenti-
cated user in response to a query from the user. The security
values can be appended to the query and passed to an
appropriate secure data source in the enterprise. The security
values can be for attributes such as grant or deny attributes,
and can include information such as role, group, or project
information associated with the user. When the results for
the query are received from the appropriate data source,
based on terms in the query and the security attribute values,
the results can be transmitted back to the user as query
results. Prior to the query, a plurality of documents and other

10

15

20

25

30

35

40

45

50

55

60

65

4

objects from a plurality of secure data sources across (and
outside) an enterprise can be crawled, with each of these
objects being indexed and having at least a portion stored
locally for searching. The security attributes can be obtained
by an identity management system for the appropriate secure
data source, and these attributes can be used with the query
to return results based on the crawled data to which the
authenticated user is determined to have access.

In one embodiment, secure content can be accessed
dynamically by first crawling a group of documents across
(and potentially outside) an enterprise, then indexing each
crawled document and storing a copy of a portion of each
crawled document along with document metadata. The
document metadata for an indexed document can contain a
generic link for that document. A query can be received from
an authenticated user of the enterprise relating to the indexed
document, and user security attribute values for that user can
be stored in the system and accessible for authorization, etc.
Upon receiving the query, a callback can be made into the
secure data source from which the indexed document was
crawled. The callback can include information about the
document, such as the generic URL, and the user security
attribute values. An updated link then can be received that is
built by the secure application or data source using the
generic link and the user security attribute values. This
updated link when presented to the user can direct the user
to results that are appropriate for the user at substantially the
time of the query. The secure data source can also return
updated metadata for the document, such as an updated title,
summary, or language.

In one embodiment, suggested content can be provided
for secure search using attribute parameterization. A set of
triggering words can be provided for matching, and a
plurality of content providers can be registered for providing
suggested content resulting from the matching. When a
query is received from an authenticated and authorized user,
a determination can be made as to whether the query
contains any of the triggering words. If so, a link template
can be accessed and values can be substituted for parameters
in the link template to generate a valid link that contains
information such as user information, session information,
security information, and information from the query string.
Instead of simply returning the link as a suggested link,
content can be obtained from a secure source using the
dynamically generated valid link. This content then can be
formatted and presented to the user as suggested content. If
the content is XML content, for example, the XML can be
retrieved and a stylesheet applied to generate an HTML
fragment that can be displayed to the user in a browser.

In one embodiment, a user-subscribed or “self-service”
source can be provided by first providing a template source
and an associated target data repository. For example, the
template source can be set up without having any specified
security credentials. A user then can subscribe to the tem-
plate source by supplying security credentials for the source.
The user can also specify other parameters to be used when
crawling the source. A user-subscribed source then can be
generated by applying the user-specified security credentials
to an instance of the template source. By using a templated
source, any changes to the template source can be dynami-
cally inherited by the user-subscribed source. An adminis-
trator then can also specify a crawl time for the user-
subscribed sources, preventing the users from starting a
crawl during peak times, etc.

In one embodiment, the storage time for security creden-
tials for a secure crawl can be minimized by allowing for the
selection of a temporary password option for a secure

US 9,467,437 B2

5

source. An administrator can select the temporary password
option, such that when an administrator initiates a crawl of
the secure source, the administrator will be prompted for
security credentials in order to crawl the secure source. The
process can first examine the metadata or other secure
source attribute(s) to determine whether the option is
selected. After the administrator enters the credentials and is
validated, the security credentials are written to temporary
storage. The credentials then are deleted from temporary
storage as soon as they are no longer needed for the crawl.
The credentials can be deleted as part of a callback at the end
of the crawl, or when stored in resident memory can simply
be deleted at the end of the crawl process. The credentials
also can be deleted for any interruption of the crawl process
and/or at system restart. If multiple crawls are initiated, the
security credentials can be retained until no longer needed
for any of those crawls.

In another embodiment, a user can select the temporary
password option for that user only, such that when a crawl
of the secure source is initiated for any reason, the user will
be prompted for security credentials in order to crawl the
secure source. After the user enters the credentials and is
validated, the security credentials are written to temporary
storage. The credentials then are deleted from temporary
storage as soon as they are no longer needed for the crawl.

In one embodiment, suggested links and alternate terms
for a search query can be determined by first defining a rule
index for a secure source operable to be queried by a user.
Upon receiving a query from a user, the query string can be
tokenized in order to generate a set of tokens. The rules
index can be applied to variations of the set of query tokens
in order to match the query string with related links and/or
alternate terms. Certain of the related links and alternate
terms can be selected to display to a user along with results
for the query string, using a selection process such as
scoring.

In one embodiment, the performance of a secure search
can be improved by defining a universal security tag oper-
able to contain user-defined security attributes. When a
user-defined security attribute and an associated attribute
value are received for a user, the first user-defined security
attribute can be associated with an attribute identifier. A
universal value can be generated for the universal security
tag by combining the attribute identifier with the attribute
value. The universal value then can be embedded in a text
index operable to be used to determine whether to allow a
user access to a secure source. When a query is subsequently
received from a user, access to the secure source can be
determined using the universal value in the text index before
returning results for the query. Irrelevant documents then
can be filtered during the search process instead of in a post
process.

In one embodiment, link scores for a secure search
system, such as an enterprise system, can be improved by
first running a query received from a user against a plurality
of secure data sources and obtaining search results for the
query. A table then can be populated with the search results,
excluding any search results that are mapped to same host
links A link score then can be calculated for each search
result, and the scored search results can be sorted in the
populated table by link score. By excluding same host links
from the table, the link scores will not be artificially inflated
due to the presence of multiple same host links. The sorted
search results can be returned to the user in response to the
query.

In one embodiment, user identities are propagated in a
secure federated search environment by authenticating a

10

15

20

25

30

35

40

45

50

55

60

65

6

user to the secure federated search environment and obtain-
ing security credentials for the authenticated use. The secu-
rity credentials can be normalized, such as by using a
federated broker, and the user identities from a plurality of
secure data sources can be translated. When a query is
received for an authenticated user, the query can be trans-
lated for each of the plurality of data sources and the
translated queries can be propagated to the secure data
sources using the translated user identities and normalized
security credentials for access. The query results received
from the plurality of secure data sources and can be con-
solidated and displayed to the user in response to the query.

In another embodiment, user identities are propagated in
a secure federated search environment by authenticating a
user to a single sign-on process of a secure federated search
environment and obtaining security credentials for the
authenticated use. The user identities from a plurality of
secure data sources can be translated, such as by using a
federated broker. When a query is received for an authen-
ticated user, the query can be translated for each of the
plurality of data sources and the translated queries and
security credentials can be propagated to the secure data
sources. The query results received from the plurality of
secure data sources and can be consolidated and displayed to
the user in response to the query.

In one embodiment, suggested links are automatically
generated in a secure search system by initiating a crawl
across an enterprise including a plurality of secure data
sources. Any external link to a data source outside the
enterprise that is discovered during the crawl can be stored
as a suggested link. If any external link is subsequently
discovered to be inside the enterprise during the crawl, the
external link can be removed as a suggested link. Relevancy
scoring can be determined for each suggested link, such that
a subset of the suggested links can be displayed to a user in
response to a query based on the relevancy scoring for the
suggested links. Keywords can be automatically generated
for the suggested links by capturing anchor text associated
with the suggested link, capturing text around the suggested
link, or traversing the suggested link and capturing text, such
as a title, from the traversed link.

A further understanding of the nature and the advantages
of the inventions disclosed herein may be realized by
reference of the remaining portions of the specification and
the attached drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments in accordance with the present
invention will be described with reference to the drawings,
in which:

FIG. 1 illustrates an exemplary secure enterprise system
(SES) configuration that can be used in accordance with one
embodiment of the present invention;

FIG. 2 illustrates an exemplary SES architecture that can
be used in accordance with one embodiment of the present
invention;

FIG. 3 illustrates an exemplary SES architecture utilizing
a directory service that can be used in accordance with one
embodiment of the present invention;

FIG. 4 illustrates an exemplary secure enterprise system
(SES) configuration that can be used in accordance with one
embodiment of the present invention;

FIG. 5 illustrates an exemplary configuration wherein
secure search is implemented by embedding the search in an
application context in accordance with one embodiment of
the present invention;

US 9,467,437 B2

7

FIG. 6 illustrates an exemplary SES configuration
wherein multiple SES instances are virtualized behind a
single HTTP server in accordance with one embodiment of
the present invention;

FIG. 7 illustrates an exemplary SES configuration that can
be used in accordance with one embodiment of the present
invention;

FIG. 8 illustrates an exemplary architecture useful for
crawlers that can be used in accordance with one embodi-
ment of the present invention;

FIG. 9 illustrates an exemplary row-level security con-
figuration that can be used in accordance with one embodi-
ment of the present invention;

FIG. 10 illustrates an exemplary SES configuration that
can be used in accordance with one embodiment of the
present invention;

FIG. 11 illustrates an architecture useful for calendar
crawling that can be used in accordance with one embodi-
ment of the present invention;

FIG. 12 illustrates an exemplary architecture useful for
email crawling that can be used in accordance with one
embodiment of the present invention;

FIG. 13 illustrates an exemplary architecture including a
crawler plug-in that can be used in accordance with one
embodiment of the present invention;

FIG. 14 illustrates an exemplary method that can be used
in accordance with one embodiment of the present inven-
tion;

FIG. 15 illustrates an exemplary method that can be used
in accordance with one embodiment of the present inven-
tion;

FIG. 16 illustrates an exemplary configuration wherein
authentication of a user is performed using an authentication
module in accordance with one embodiment of the present
invention;

FIG. 17 illustrates an exemplary method that can be used
in accordance with one embodiment of the present inven-
tion;

FIG. 18 illustrates an exemplary method for administering
user-defined source level settings that can be used in accor-
dance with one embodiment of the present invention;

FIG. 19 illustrates an exemplary create source page that
can be used in accordance with one embodiment of the
present invention;

FIG. 20 illustrates another exemplary page that can be
used in accordance with one embodiment of the present
invention;

FIG. 21 illustrates an exemplary user-defined source page
that can be used in accordance with one embodiment of the
present invention;

FIG. 22 illustrates an exemplary process for refreshing a
security filter that can be used in accordance with one
embodiment of the present invention;

FIG. 23 illustrates an exemplary SES configuration that
can be used in accordance with one embodiment of the
present invention;

FIG. 24 illustrates an exemplary method for providing
modified information that can be used in accordance with
one embodiment of the present invention;

FIG. 25 illustrates exemplary method for providing sug-
gested content that can be used in accordance with one
embodiment of the present invention;

FIG. 26 illustrates an exemplary process by which SES
can interact with a provider in accordance with one embodi-
ment of the present invention;

10

20

25

30

40

45

55

8

FIG. 27 illustrates a hierarchical overview of integration
with a query application in accordance with one embodi-
ment of the present invention;

FIG. 28 illustrates an exemplary flow diagram of a
process that can be used in accordance with one embodiment
of the present invention;

FIG. 29 illustrates an exemplary default query application
page that can be used in accordance with one embodiment
of the present invention;

FIG. 30(a) illustrates an exemplary method for utilizing a
self-service source that can be used in accordance with one
embodiment of the present invention;

FIG. 30(b) illustrates an interstitial page that prompts the
administrator to enter temporary passwords for a crawl that
can be used in accordance with one embodiment of the
present invention;

FIG. 31(a) illustrates an exemplary process for providing
a minimum credential lifespan that can be used in accor-
dance with one embodiment of the present invention;

FIG. 31(b) illustrates a timeline of multiple sources being
crawled, with temporary passwords enabled on the last
source that can be used in accordance with one embodiment
of the present invention;

FIG. 32 illustrates an exemplary flow for returning sug-
gested links and alternate keywords to a user that can be
used in accordance with one embodiment of the present
invention;

FIG. 33 illustrates an exemplary process for determining
suggested links and/or alternate keywords that can be used
in accordance with one embodiment of the present inven-
tion;

FIGS. 34(a) and (b) illustrate an exemplary process for
appending user-defined security attributes to a document or
query that can be used in accordance with one embodiment
of the present invention;

FIG. 35 illustrates an exemplary method for providing
improved link analysis that can be used in accordance with
one embodiment of the present invention;

FIG. 36 illustrates an exemplary SES configuration that
can be used in accordance with one embodiment of the
present invention;

FIG. 37 illustrates an exemplary method for propagating
user identities that can be used in accordance with one
embodiment of the present invention;

FIG. 38 illustrates an exemplary method for propagating
user identities with a single sign-on (SSO) process that can
be used in accordance with one embodiment of the present
invention;

FIG. 39 illustrates an exemplary configuration wherein a
user can attempt to search across an enterprise in accordance
with one embodiment of the present invention;

FIG. 40 illustrates an exemplary process for generating
suggested links that can be used in accordance with one
embodiment of the present invention;

FIG. 41 illustrates an exemplary method for providing
improved result ranking that can be used in accordance with
one embodiment of the present invention;

FIG. 42 illustrates components of a computer network
that can be used in accordance with one embodiment of the
present invention; and

FIG. 43 illustrates components of a computerized device
that can be used in accordance with one embodiment of the
present invention.

DETAILED DESCRIPTION OF THE
INVENTION

Systems and methods in accordance with various embodi-
ments can overcome the aforementioned and other deficien-

US 9,467,437 B2

9
cies in existing search and querying systems by providing a
flexible, extensible, and secure architecture that can operate
across enterprise systems. Such an architecture can provide
a simple Internet-like search experience to users searching
secure content inside (and outside) an enterprise.

An extensible enterprise search mechanism in accordance
with one embodiment provides for the crawling and search-
ing of a variety or sources across an enterprise, regardless of
whether any of these sources conform to a conventional user
role model. The mechanism allows for security attributes to
be submitted at query time, for example, in order to provide
real-time secure access to enterprise resources. The user
query also can be transformed to provide for dynamic
querying that provides for a more current result list than can
be obtained for static queries.

Such functionality can be provided by a secure enterprise
search system in accordance with a variety of embodiments
described and suggested herein. A secure enterprise search
(SES) system, such as may include the Oracle® Secure
Enterprise Search product from Oracle Corporation of Red-
wood Shores, Calif., can be a standalone product or inte-
grated component that provides a simple yet powerful way
to search data across an enterprise. An SES system can crawl
and index any content and return relevant results in a way
that is familiar to users, such as is returned for typical
Internet-based search results. SES also can provide a query
service API, for example, that can easily be plugged into
various components in order to obtain a search service for
those components.

A SES system 102 can utilize the text index of a database
108, as is illustrated in the exemplary configuration 100 of
FIG. 1. In one embodiment, a database application accepts
documents and generates the lists and other elements useful
for text searching. An API allows a user to submit queries,
such as text queries, to search documents based on, for
example, keywords. The SES system can utilize components
such as crawlers 110 to locate and return the appropriate
data, such as by locating a Web site and returning contents
of'a page matching a query, as well as determining the URLs
on the page, fetching the next set of URLs, and so on. These
crawlers may not only be pointed to Web sites, but can be
pointed to databases, applications, or any place else where
data is available. Specialized crawlers can be used for each
such data source. For instance, a Web crawler can be used
for Web sites while a separate file crawler is used to search
files. A database crawler can be configured to examine the
appropriate tables and records and send the appropriate data
back to SES 102. SES thus is concerned with documents and
the associated contents, as well as metadata such as who
created each document, when the document was created, etc.
The metadata can include other flexible attributes, such as a
purchase order number for a purchase order document, as
well as some security attributes. Crawlers therefore can
provide to SES at least three types of attributes, including
document data, metadata, and security information.

A query layer 104 can be configured to receive queries
from users, applications, entities, etc. These can be any
appropriate queries, such as simple text queries entered
through a search box or advanced queries. The query layer
can convert a user query into the appropriate text queries,
making sure security, authorization, authentication, and
other aspects are addressed, such that the results are returned
to the user based on what the user is allowed to access across
the enterprise. This approach can be referred to as secure
enterprise search, as an Internet search or other such
searches typically done only for public documents using
more rigid queries. SES can also allow for searching of

15

20

35

40

45

50

55

10

public documents, but when accessing secure content SES
can ensure that only authorized persons are able to retrieve
that content. This can be accomplished using any of a
number of different security approaches, such as role-based
access and other higher levels of access as discussed later
herein. Any of a number of Java components 106 (or other
such components) can operate between the query layer 104
and the crawlers 110 in order to control and/or modify the
information used for crawling and querying data as dis-
cussed elsewhere herein.

FIG. 2 shows an architecture for an exemplary SES
system 200 that can be used in accordance with various
embodiments discussed herein to provide a secure platform
for user queries, searches, and other such functionality. This
architecture includes a crawling component, an indexing
component, and a query component. An administration API
is available to administer the various components. The
crawling component has an extensible plug-in API, which
allows various crawlers to be plugged into the SES system.
SES can provide basic/default crawlers 202 out of the box
for crawling web sources, database tables, file systems, and
other such resources 204. An SES data store 206 can accept
a document (that may be virtual) and a set of attributes
corresponding to that document. The indexing component
indexes the document and its attributes using the database
text index. The query component 208 takes a user query and
applies various search techniques to retrieve relevant search
results. The query component also can include various other
technologies to enhance the search, such as suggested links,
alternate keywords, real-time integration, and other tech-
nologies as discussed in more detail below. SES also can
federate searches to other registered SES instances.

Security for an SES system can be enforced using an
identity management system or directory service, such as the
Oracle Internet Directory (OID) available from Oracle Cor-
poration. SES can use an identity management system for a
number of operations including user authentication during
query time, using approaches such as single sign-on (SSO)
and form logic. User authorization can occur at various
times, such as during crawls and at query time. At crawl
time, OID can be used to determine whether a user or group
given by the crawler is valid and can convert the user
identity to an appropriate identifier, such as a globally
unique identifier (GUID). At query time, the OID can be
used to obtain a list of groups belonging to the user. The OID
also can be used for functions such as stamping users and/or
roles for a data source, as well as managing entity creden-
tials for federation and crawling of various sources. SES in
one embodiment can be secure search enabled by registering
with OID. The registration process registers the database
with OID and also creates an application entity for SES in
OID.

FIG. 3 shows an exemplary architecture 300 for using
SES 302 with a directory service such as OID 304. In this
example, the crawler 306 returns the user or group as a
simple name, distinguished name (DN), or GUID. The
crawler uses OID to validate the user/group names and
convert them to a canonical GUID form. Administration
screens can use OID to validate user/groups when the
administrator stamps any data source with source-level
access control lists (ACLs), and can convert the user/group
to the canonical GUID format. When the end user logs into
the query application 308, the OID user validation proce-
dures are called to authenticate and validate the user. When
a user performs a search through the query layer, the
database 310 (e.g., through Xbase) uses OID 304 to retrieve
the list of roles/groups to which the user belongs. For secure

US 9,467,437 B2

11

federated search Broker SES instance (Master) can translate
the identity of the logged-in user appropriately for the
endpoint SES instance (Slave) based on some mapping
attribute in the Identity Management System.

Application searching in such an SES system can be
accomplished using a variety of mechanisms. Using a direct
navigation mechanism, for example, can allow a user to go
directly to a function or action based on keywords. A user
entering a keyword such as “W2” should be able to receive
a link (or other resource access mechanism) that can take the
user directly to the appropriate W2 page for the user. This is
accomplished in various embodiments using suggested links
or through menu crawls.

Using an information access mechanism allows a user to
retrieve relevant application transactional data and static or
generated documents in context. This can be achieved by
crawling and indexing application data, through real time
data access, or by federating to various search engines. The
productivity of the search can be further enhanced by
integration, wherein the user is able to go to a single screen
and obtain information across applications and Intranet
repositories. Further, the visualization of information spe-
cific to a data source can further enhance the productivity of
the end user. For example, instead of showing a standard hit
list for a human resources (HR) people result, it might be
more useful to show a simple table that contains all the
relevant information in an easy-to-understand format. This
can be achieved in SES through XQuery/XSLT transforma-
tions, for example, that are applied to an XML format of the
result.

A challenge facing SES systems involves application
security, which is often complex and does not lend itself
easily to a simple user/group model. Often there are dynamic
security rules that must be applied. Authentication for appli-
cations can be accomplished through a mechanism such as
single sign-on (SSO) or through the a user store specific to
the application. Oracle eBusiness 111, for example, allows a
certain set of users to be enterprise users that are authenti-
cated by SSO, while others are authenticated by the appli-

cation itself. Systems such as SIEBEL® and PEOPLE-
SOFT® systems also use their own user identity
management.

Another challenge involves authorization, which can be
specific to each application and can utilize various security
attributes to achieve authorization. In a menu search
example, such as is used in Oracle eBusiness, a menu system
consists of paths and links to functions. The menu system is
hierarchical with sub-menus, with each sub-menu being
accessible by a set of responsibilities. An end user has a set
of responsibilities based on user roles (e.g. a manager role
gets a responsibility that allows it to see links for employee
records). Thus each menu entry is protected by a list of
responsibilities. When an end user logs in, the user can
choose a specific responsibility based on the role of the user,
which determines the menu items that user can see. One
challenge is the desire to show all menu items without the
end user having to pick a specific responsibility. Thus it can
be desirable to take every menu item and stamp that item
with all possible responsibilities associated with the menu
item. When the end user performs a search, the list of
responsibilities of that user can be found and matched with
the relevant items. An eBusiness knowledge base applica-
tion can consist of documents that are secured by a combi-
nation of categories and groups. Users may belong to certain
set of categories and or groups. When an end user logs in,
the list of categories and groups belonging to the user is used
to limit the documents that can be seen by the user. Thus for

10

15

20

25

30

35

40

45

50

55

60

65

12

search purposes, the documents can be stamped with the list
of categories and groups associated with the document.
During query time, the list of categories and groups for an
end user can be obtained and used as a security filter. For a
contracts application where contracts include clauses and
attachments, the clauses and attachments can be indexed
separately.

In SES, access to information can involve crawling and
indexing the information content from various application
data, suggested content access (integrating with live query
results from applications), and federating to other search
engines already used by the application. Information access
also can include visualizing the information in an easy to
understand format. In order to crawl and index application
content, one should understand the application’s security
model. In order to understand the model, it can be necessary
to identify the target application to search, understand the
objects or data to search and how their security is mapped,
identify whether there is a way to inverse the security, and
identify the roles/attributes that belong to a given user. Once
the application’s security model is understood, a crawler
plug-in can be written that can obtain the list of virtual or
real documents along with the list of users/roles/security
attributes for that document. If the security cannot be fully
established during crawl time due to dynamic or fast chang-
ing security attributes, or if it is desired to check for enforced
security between crawls, a query time filter can be used. A
query-time filter is a plug-in that typically is called once the
search returns results, such that the plug-in can further prune
results based on the current security for the user.

A query application layer can be used to authenticate an
end user, authorize the user, and perform the actual search.
A custom application can be built using a Query API. The
custom application then can take care of authentication of
the user (login), which may not be necessary if the custom
application is embedded inside the target Enterprise Appli-
cation module. The custom application can authorize the
user and obtain a set of valid values for the security
attributes for that specific user. These are the values for the
security attributes stamped per document during the crawl.
The custom application then can build a query filter using
that set of attribute values and send that query to the
backend. The application can optionally rewrite the display
URL if the URL is session specific.

Suggested content can be provided in a way similar to that
of the suggested link mechanism, except that the link is
actually traversed and the data retrieved from the backend
store and displayed to the user. Real time data access
requires that the link to the backend provider be registered
as a suggested link, whereby the custom query application
traverses the link, gets the result, and formats the result
appropriately. The backend provider usually returns the
results as XML and the result can be formatted easily using
XQuery or XSLT. Suggested content can be useful integra-
tion for the cases where the backend data cannot be easily
crawled and indexed, as well as where the data is highly
transactional and hence does not lend itself to a crawl/index
approach. Further, real time access can show the latest
information that is not otherwise available until the next
crawl. For example, in a purchase order case, the data might
be crawled once an hour. The real time data access might be
used to show results that have come within the hour.
Suggested content also can show the most useful informa-
tion immediately. For example, if the user types in “meet-
ing” as a keyword, it is useful to return any meeting for that

US 9,467,437 B2

13

user within the next few hours. This is extremely useful,
even if the information has already been crawled and
indexed.

In an SES system, application search can be deployed in
a number of different ways. For example, application search
can be deployed in a standalone mode or an embedded
mode. In a standalone mode, users come directly to a search
screen to search data across applications and Intranet/Inter-
net sources. The users do not have to log in to the target
application before performing the search. In the case of the
embedded mode, the user logs in to the application module
and the application module presents a search box which
routes the search to the SES backend and processes the
results within the context of the application.

An example of a standalone scenario will be described
with respect to the configuration 400 of FIG. 4. In this case,
a custom application 402 is built on top of a Query API for
SES 404, which the users use for search. The users do not
have to be in the context of the target application 406. FI1G.
4 illustrates how secure search can be done using a custom
application 402 separate from SES 404 and the target
application 406. The sample application here is able to
authenticate and authorize the user by talking to the Appli-
cation component. An option to more tightly integrate this
approach would involve embedding the custom application
code within the target application. Authentication can use
OID/SSO if the application also uses SSO. Application
authentication can require that the custom application be
able to authenticate the user directly against the target
application using a form submission to the target application
login screen or by using an API to pass in the user creden-
tials. Another identity management system that the applica-
tion shares can be used, such as where the application user
has a mapping to an active directory (AD) that can be used
for authentication. In this case, the name of the user may
need to be mapped to the username on the target application.
Authorization then can require that the custom application
get the security attributes for the user for each data source.
Each data source is configured so that all documents under
that data source use the same set of security attributes. When
the user enters any search term for a data-source, a security
filter expression based on the set of security attributes can be
attached to the query. For example: If {Al, A2, A3} is the
set of security attributes used for the documents under a data
source DS1. If a user A with values, V1 V11, V2, V3 for the
security attributes Al, A2 and A3 respectively, logs in and
makes a search, a security filter expression like (Al value:
“V1V117) AND (A2 value: “V2”) OR (A3 value: “V3”) can
be used appended to the user query.

In an example of embedded mode, the target application
can use SES as a service to perform searches within the
context of the application. Some of the steps mentioned in
the standalone case are not required as the user is already
authenticated and authorized by the application. In this case,
SES can be installed as a separate product and the target
application can use a web service query API to talk to SES.
The administration of the crawlers, etc., can still be done
using an SES administration API.

FIG. 5 illustrates an exemplary configuration 500 wherein
secure search can be implemented by embedding the search
for SES 504 from within an application context. Authenti-
cation is taken care by the target application 502. Since the
context for the user is already established within the appli-
cation, it can be trivial to get the authorization security
attributes for the user. The query application can add the
security filters for the search and format the results appro-

10

15

20

25

30

35

40

45

50

55

60

65

14

priately. The application can also include additional filters
for such path information (search under the folder /a/b/c,
etc.).

As discussed above, SES can take advantage of a secure
federated search (SFS) mechanism. Federated Search can be
useful for scaling searches and for integrating results from
multiple search instances across components and/or depart-
ments, for example. An SES federated search broker can
communicate with an endpoint via a SES Web service API.
SFS can achieve searching secure content across distributed
search instances, which can necessitate propagation of user
identity between the instances.

In a case where federation is used for scaling, typically
there will be a cluster of SES instances that are fronted by
a single broker. The data is distributed amongst the broker
and endpoints. In an SSO setup, this can be done by fronting
the broker and the endpoints slaves using a single HTTP
server/SSO server. FIG. 6 shows an exemplary configuration
600 for such an approach. Multiple SES instances 602 can
be virtualized behind a single HTTP server 604, which can
use an appropriate protocol such as the AJP13 protocol to
communicate with the backend. Since a user with an HTTP
or SSO server can connect to the appropriate (e.g., AJP13)
port on the SES instances 602 and masquerade as a specific
person, the channel between the HTTP server 604 and SES
instance 602 can be SSL enabled (else the entire OHS+SES
instance machines may need to be fire-wall protected). In
this setup, the user queries are directed against the broker
SES instance 606. Since the broker is protected by SSO, the
user is challenged for user credentials and a cookie is set for
this domain to store the user’s credentials in the session.
When the broker makes a federated Web service call to the
slaves, the broker 606 propagates the end user cookies.
Since the same HTTP server fronts them all, the authenti-
cation succeeds and the end user identity is correctly setup
in the containers in the endpoint SES instances.

In some scenarios, such as load balancing, the SES
instances may be fronted by a pool of HTTP servers. In that
case, the HTTP servers can be configured in the load
balancing mode which enables them to share the same
cookie. Thus the SSO mechanism described above passing
HTTP cookies can be used across these HI'TP servers. In
cases where the same SSO server cannot front the slaves, a
proxy login mechanism can be used.

When using federation for integration, which can involve
a company wide search, for example, a request can be
federated to the various SES instances across the various
components and/or organizations and the results integrated.
For example, the page “my.oracle.com” has a search box
that federates searches to other embedded SES instances in
Oracle Collaboration Suite (OCS), E-Business Suite, etc.
The distribution of the SES instances may be geographical,
organizational, or based on components or software suites.
In this scenario, these SES instances do not typically share
the same HTTP server. To authenticate to the slaves, the
broker uses a proxy login mechanism. An S2S mechanism
can be used to establish a trusted relationship between
broker and endpoint SES instances.

The Web service can expose a method such as proxy-
Login() that can take in an application entity, password, and
the user as which to proxy. This is illustrated in the exem-
plary configuration 700 of FIG. 7. The broker SES 702
passes the application entity, password, and the value of the
authentication attribute (e.g. username) to the endpoint 704.
The endpoint then talks to a directory server 706 such as an
Oracle Internet Directory (OID) server to verify the appli-
cation entity credentials and checks to see if this application

US 9,467,437 B2

15

entity is in the “trusted group.” If so, the endpoint switches
the identity to that of the passed-in user, and the search query
is executed. The broker may be protected by SSO, but the
Web service end point in the slaves typically will not be SSO
protected, as there may be no way for the broker to authen-
ticate through SSO as cookies are not typically shared across
HTTP servers. Also, since the application entity password is
passed through the proxy login method call, the channel
between the broker and endpoints should be SSL enabled in
this example.

An SES system also can allow for secure connectors to be
built to various data sources and applications. Such appli-
cation connectors can use any appropriate mechanism, such
as Oracle’s Service to Service (S25) mechanism, to establish
an application level trust with the target source and to crawl
the content either as a super user or proxy as various OID
users. In general, a S2S mechanism requires that an appli-
cation entity be created in OID and added to a group such as
a global trusted applications group. The application entity
and password can be passed.

FIG. 8 illustrates an exemplary architecture 800 useful for
crawlers such as Oracle Collaboration Suite (OCS) crawlers
for OCS 804. For a calendar application, the SES application
entity 802 can be added to a user proxy privilege group
under the calendar application entity. The calendar can
provide a jarfile such as “calendarlet.jar” which can take in
the application entity, password, and the user as which to
proxy, and can pass it in clear text to the backend calendar
server. The secure https protocol can be used to provide a
secure transport between the crawler plug-in and the calen-
dar server. The crawler plug-in can talk to OID 806, retrieve
the list of users, and can proxy as every user and retrieve
their calendar data. The calendar data can be access control
list (ACL) stamped with the GUID of the proxied user.

Content services can require that the application entity be
added to the global trusted applications group. Content
services can provide a Web service API to navigate the
folder hierarchy along with the metadata and ACLs associ-
ated with every document. A special S2S endpoint can be
provided for S2S login. The application entity and password
can be passed to this endpoint along with an administrative
user who has privilege to “read” the entire tree. Again, like
calendar, the https protocol may be used to secure the
channel. However, unlike calendar, content services can use
the digest authentication for the application password, so
there is little risk of the password being sent in clear text.
Once logged in as the administrative user, the entire tree
with the data, metadata and ACLs is fetched and indexed in
SES.

Email may not provide any Web service end point. A Web
service connector can be deployed on the collaboration
server side as an application. The Web service connector can
use APIs such as JavaMail APIs to talk with a mail store.
This Web service can be protected by S2S. The crawler
plug-in can send the S2S credentials and can proxy as
different users (similar to calendar), getting their mail and
indexes the messages. Each mail message can be ACL
stamped with the GUID of the proxied user.

SES also can be embedded as a service within compo-
nents such as OCS and Portal components, etc. In this
scenario, the SES instance is typically fronted by the same
OHS/SSO server as the component. The components (e.g.,
OCS, Portal) use the Web service methods to invoke the
search service, using an approach such as SSO or proxy
login to establish the end user identity.

When crawling enterprise data, for example, it can be
desirable to enforce virtual private database (VPD) policies

10

15

20

25

30

35

40

45

50

55

60

65

16

for the table crawls. In one example, row level security
(RLS), also known as fine grained access control (FGAC),
allows restricting access to records based on a security
policy implemented in PL/SQL. A security policy, as used
here, simply describes the rules governing access to the data
rows. This process can be done by creating a PL/SQL
function that returns a string. The function is then registered
against the tables, views, or synonyms to be protected by
using a package such as a DBMS_RLS PL/SQL package.
When a query is issued against the protected object, the
string returned from the function is effectively appended to
the original SQL statement, thereby filtering the data
records.

While SES can crawl and index table content, a VPD
policy for a table enabled is not easily enforceable in SES,
as row-level security (RLS) policies can be implemented
using arbitrary security policies. Such mapped security
schemes may not always be enforceable. Query time filter-
ing (QTF) can instead be used to address these situations.
From a QTF perspective, RLS is implemented as illustrated
in the exemplary configuration 900 of FIG. 9. In this
example, a connection is made from SES 902 to the appro-
priate database 904 as the query user. The primary key is
then obtained that is associated with each document. A test
is then run for select privilege on the underlying database
record.

A user can provide credentials for the crawler to use in
SES. While the repository may be unaware of this arrange-
ment, the crawler can appear to be a normally authenticated
user. Templates can be used to define a subscribable unit of
secure documents, and can define the location of the reposi-
tory as well as how to crawl that repository, leaving out the
crawling credentials. A user can subscribe to a template in a
query application interface. A self service source then can be
crawled at a time determined by an administrator, for
example, in order to prevent denial of service.

An example will be described with respect to the exem-
plary configuration 1000 of FIG. 10. Here, an administrator
creates a template 1002 for an email source 1006 and defines
the email server address. A user then subscribes to the
template, and provides a username and password (or other
appropriate user identification information). Subsequently,
the search system uses an appropriate crawler 1004 to crawl
the email account as the user and indexes the messages.
These indexed documents are protected so that only the
particular end user can view these documents.

When SES indexes documents, SES can also index acces-
sible user information to the document into a text index. The
indexed accessible user information then can be used for
secure query. For example, when doing text index optimi-
zation for ACLs, SES can use a datastore, such as Oracle’s
User Datastore which is Oracle Text function. The procedure
name for User Datastore is datastore_proc. Oracle Text picks
up rows in eq$doc one by one, and calls datastore_proc with
the appropriate row ID (rowid). Datastore_proc gets the
rowid, collects the necessary data from the row, and con-
structs a string. This string is then returned to Oracle Text
and indexed. SES performs additional functions during the
construction of the string in order to provide for a field
section secure search. For example, a datasource_id can be
stored into a tag such as a <D> tag for all the documents. If
a document belongs to data source ID 101, for example, then
SES can add “<D>101</D>" to the string to be indexed. For
documents with the appropriate ACL policy, SES can add a
grant or deny tag as discussed later herein. In the case where
acel, ace2, and ace3 are granted for a document and ace4
and ace5 are denied, SES can build a string such as:

US 9,467,437 B2

17
<GRANT>acel ace3</GRANT><DENY>ace4
ace5</DENY>
The datasource_id can be added to all the documents. If this
document belongs to datasource_id 101, the string can be
formed as:
<D>101</D><GRANT>acel
<DENY>ace4 ace5</DENY>
Ifthe document is assigned to OWNER, the OWNER GUID
can be added to the GRANT tag. If the document has no
ACL though its ACL policy, the document can be a public
document, whereby SES adds ‘pub’ to the GRANT tag. To
get all the ACEs in a given ACL, SES can call a function
such as get_generated_acl_internal using, for example:
aces:=eq_acl.get_generated_acl_internal(acl_id)
and then parse aces to get the individual ACEs. This string
then can be added to the end of the document. The whole
string then can be returned to Oracle Text and indexed.

In order to crawl certain resources, such as email and
calendaring resources, it can be necessary to create or utilize
special crawler plug-ins, such as may be built upon exten-
sible crawler plug-in APIs. For example, FIG. 11 illustrates
an architecture useful for calendar crawling. A Calendar
resource 1102 can provide a Java API 1104 (e.g., package
oracle.calendar.soap), which allows querying of calendar
data by the SES components 1106. This Java API 1104 can
use a protocol such as SOAP to talk to the calendar backend
Web service 1102. An exemplary API requires users to
provide username, application entity, and password infor-
mation, along with the end point with which to talk. The
application entity can be registered as a trusted entity under
the appropriate calendar entry in an identity management
system such as OID 1108. The Calendar crawler plug-in
1110 can contain code to invoke the Calendar Java APIL.
Users can install the calendar type through the Global source
type addition, then create sources of this type giving the
calendar Web service end point, OID user, and other infor-
mation, and then crawl the source.

When a crawl of this source is initiated in one embodi-
ment, SES will first call the agent to start crawling and fetch
URLs. At this time, the crawler plug-in fetches the first valid
calendar user from OID and uses the calendar API to get all
the calendar items (events) for this person for a three-month
time period, starting from a month prior to the current date.
The calendar data is then extracted and various attributes are
created. The attributes and properties are returned through a
DocumentMetaData object to the crawler plug-in through
the fetch call. The body of the document consists of the
event title, event description, location, and summary. The
body is submitted through DocumentContatiner object to
SES. The agent checks for the next event in the current user,
processes the event, and returns the new URL data object.
This process is repeated until all events under the user is
fetched, and then can be repeated for the next user obtained
from the OID. Once all users and all events are processed,
a null is returned for the fetch call, which instructs the SES
crawler plug-in to start processing the documents for index-
ing purposes.

FIG. 12 illustrates an exemplary architecture 1200 that
can be used for email crawling in accordance with one
embodiment. An email package 1202 such as OCS Email
may not provide a Web service API for email. For example,
OCS Email provides an email SDK API 1204 that is an
implementation of the JavaMail API. In order to support this
as a remote deployment, Java RMI, Web services, or another
appropriate package may be employed. Web services is the
current standard format being used for content services,
calendar, and other OCS products, and is supported by the

ace2

ace2 ace3</GRANT>

10

15

20

25

30

35

40

45

50

55

60

65

18

application tier, such that Web services typically is used to
communicate with the remote email system. A Web service
server can be deployed on an SES mid-tier 1206 that runs the
email server. This may be protected by a basic authentication
with SSL, digest authentication, or S2S mechanism. If S2S
is used, the SES application entity can be registered in OID
1208 and added to the Trusted Applications Group in OID.
The Email crawler plug-in 1210 contains code to invoke the
client API 1212. Users can install the OCS email type
through a global source-type addition, such that they are able
to create sources of this type giving the email Web service
end point, OID user, and other such information to crawl the
source.

When a crawl of this source is initiated in this example,
SES will first call the agent to start crawling and fetch URLs.
At this time, the crawler plug-in fetches the first valid email
user from OID 1208 and uses an API such as the OCSE-
mailWSClient API 1212 to get all the email folders and
download all messages in the folder. The SES crawler will
add one DocumentMetaData object which contains the URL
for each message or folder to its queue. The Document-
MetaData is returned through the fetch call later when the
plug-in checks for the next message in the current user. It
then processes the message by downloading the body. The
email body is submitted through DocumentContainer object
by the crawler plug-in. The crawler framework can handle
the email parsing including extracting the attributes like
“author”, “from”, “to” and process the attachments. This
process is repeated until all the messages under all folders
under the user are fetched, then is repeated for the next user
obtained from the OID 1208. Once all users and all events
are processed, a null is returned for the fetch call, which
instructs the SES crawler plug-in to start processing the
documents for indexing purposes.

Flexible Authentication and Authorization

As discussed above, secure search across enterprise appli-
cations can require authorization of the information being
retrieved for an authenticated user. Traditional security mod-
els utilize user and group entities to represent the subjects
and access control lists (ACLs) to represent security poli-
cies. This model does not address the requirements for
secure search across a variety of disparate systems, modules,
and resources across an enterprise. For example, a Web
business application may use a custom paradigm instead of
simply defining users and groups. Further, security policies
may change frequently, and an approach is needed to capture
these policies in a timely manner while providing efficient
and acceptable performance. While query-time authoriza-
tion can provide dynamic checking, such authorization can
pose significant performance degradation problems due to
the high cost of passing each document through a Java filter
plug-in or other such component.

A flexible authorization mechanism allows crawlers, as
well as documents, to indicate certain security attributes. In
the case of a contracts crawler, for example, the crawler can
indicate that there are two associated security attributes such
as “Category” and “Visibility,” which can receive values
during crawl time. For a given document D1, the associated
security attributes can specify that any user or group with
attribute Category value C1, C2, or C3 can access this
document, as well as any user or group with attribute
Visibility value V1 or V2. In some cases, a user or group
must have one of these Category values and one of these
Visibility values to access a document. The crawler can
provide these security attributes, which can be indexed
internally. At query time, a callback mechanism can be used
so that when a user logs in, the callback mechanism can be

US 9,467,437 B2

19

used to obtain the Category and Visibility values for that
user. These attributes then can be associated with any query
in order to determine dynamically and at query time which
documents are accessible to the user.

In one embodiment, all the Category and Visibility iden-
tifiers for a document can be stamped or fixed for that
document, so that it is simply a matter of determining the
attribute values for the user at query time. In a case where
roles or security hierarchies are not static, such as is the case
for employees or project teams, for example, the entire
hierarchy cannot be stamped as there may be changes
between crawls and/or queries. By using the callback
mechanism, an indenter such as employee ID can be used a
query time to determine all other users or groups that have
access, as well as which groups, projects, etc., that are
currently associated with the user. This information then can
be used to return the result.

FIG. 13 illustrates an exemplary architecture 1300 includ-
ing a crawler plug-in 1302, which can provide the name of
the security attribute that the crawler uses at crawl time, as
well as the values for the associated attributes. For each
document, the crawler can indicate the values for security
attribute S1, for example, as it is desirable to not show the
security values as attribute values in the search results, the
security values can be hidden. The crawl plug-in 1302 can
provide the tag names and the associated values for each
document. At query time, the user logs in and then can
perform a query using the query application 1304. At login
time, which can take a period of time due to the occurrence
of callbacks, the user can be authenticated as discussed
elsewhere herein, such as by validating username and pass-
word, for example. Callbacks for authorization then can be
performed to obtain the values for the security attributes for
that user. When a query is subsequently received from the
user, the values for the security filters can be obtained from
the authorization modules 1306. The security query then can
be appended automatically to the original user query. For a
user searching using a keyword, the query can be appended
with security attribute information such as c=$date and
d=S%userlD, for example. This tagging of the query with
security information happens transparently to the user, and
the user is unable to view the appended attribute values.

An initial user query might search for results related to
“Company A.” From the authorization process, it may have
been determined that the user has security attribute values
(C1 or C4) and S2. The query thus can be re-written to say:

“Oracle” AND ((C1 or C4) IN C) AND (S2 IN S)
where C and S are security attribute tags. Such an approach
can guarantee that no one can thwart the security due to the
level at which the security is being enforced.

In addition to the types of tags discussed above, referred
to herein as GRANT tags, a user might also have associated
at least one DENY tag, wherein a document can be available
to everyone in a group except for a certain user, everyone in
a company except a certain group, etc. In this case at crawl
time values can be passed for tag C where C1 and C2 are
grant attributes and C3 is a deny attribute. If a query later is
received with a value for C3, then access should be denied
to that document for that user or group. At crawl time the
crawler is able to determine that certain tags are grant
attributes and certain tags are deny attributes. The values
passed at query time then can be used to determine whether
to provide access.

In one embodiment, security attributes or type “GRANT”
or “DENY” are stamped onto documents at crawl-time.
These attributes are stored in FIELD sections in the search
index along with the document. At user login time, filter

25

40

45

50

55

20

such as a Java plug-in filter (e.g., QueryFilterPlugin) pro-
vides security attribute values that represent the current user.
A security filter, such as may be in the form of a stored query
expression (SQE), is generated to represent the user, and
filter is used along with the search query to retrieve docu-
ments securely. Only documents with security attributes
matching the security filter are returned.

Such a flexible and extensible authorization model allows
secure search to work with a more diverse number of data
repositories and other resources. Flexible authorization can
also rely on flexible authentication to determine and accu-
rately identify a user. As illustrated in the exemplary steps
1400 illustrated in FIG. 14, an SES crawler can crawl a
group of documents (or other data sources) across an enter-
prise 1402, and can further crawl documents outside the
enterprise. A copy of at least a portion of each crawled
document then can be stored and accessible to SES, and each
such document can be indexed appropriately 1404. When a
query is subsequently received for a user 1406, the associ-
ated security attribute values obtained for the validated user
are obtained 1408. These security values then are appended
to the user query and passed to the application 1410. Results
are received from the application based on the security
attribute values for the user, and are transmitted to the user
1412. As discussed herein, the user can be shown documents
to which the user has GRANT access, for example, and
denied documents to which the user has DENY access.

Before authorizing a user to have search access to secure
data, such as by using a flexible authorization mechanism
described above, the user must be authenticated in order to
validate the identity of the user requesting access. A secure
search system must be able to authenticate users, such as
against an identity management system. In existing systems,
a single vendor of identity management systems was chosen
and the search system was permanently linked with the
vendor systems for authentication. Typical user authentica-
tion approaches involve communications with a number of
directory servers, a large number of usernames and pass-
words are stored, then verifying the correct username/
password combination. When the username/password pair is
validated, the user is determined to be authenticated. A
problem with such an approach for enterprise applications is
that applications can each have their own database tables
where user identity information is stored, and there are a
number of different directory and non-directory servers that
do the authentication for these applications, such that this
single model is insufficient for a user across all these
enterprise applications.

Systems and methods in accordance with embodiments of
the present invention can address these and other issues by
providing a flexible and extensible authentication architec-
ture. A flexible authentication framework in accordance with
one embodiment is an abstraction of an identity management
system utilizing a two-tier hierarchy that abstracts the notion
of users and groups. The framework consists of a public
interface defining generic authentication and validation
activities for an identity management system, and a security
module for the search system that is implemented internally
using this generic interface. A concrete implementation of
the public interface based on a specific identity management
system permits the search system to perform authentication
and validation activities through that identity management
system. This can be done in the field without any software
changes to the search system by registering name of the
concrete implementation class with the search system
through an administrative interface. Such a search system is

US 9,467,437 B2

21

not tied to a fixed identity management system, and virtually
any system that can authenticate users can be used as an
identity management system.

Similar to the flexible authorization architecture discussed
above, a flexible authentication architecture can include a set
of APIs for SES, whereby user identification values can be
passed at login time to the appropriate application to validate
user identity. Such an approach allows any new identity
management system to easily be added into the SES envi-
ronment by simply adding a plug-in to obtain user identifi-
cation information from the service and validate the user
identification information. This flexible approach to passing
user information can be accomplished similar to that dis-
cussed above with respect to flexible authorization. In one
embodiment the set of authentication APIs at the time of user
login makes sure the user is valid, determines groups to
which the user belongs, roles for the user, etc. The system
can obtain user role information at the time of validation, or
in response to a callback after the user is validated.

FIG. 15 shows steps of an exemplary method 1500 for
authenticating a user in accordance with one embodiment. In
such a method, identity information is received for a user
attempting to log into the system 1502. This can be any
arbitrary information used by any identity management
system to validate a user. The identity information is pro-
vided to a set of authentication APIs that each are operable
to act as an interface for a respective identity management
system 1504. The user is then validated for at least one
identity management system 1506, else denied access to the
secure enterprise system. For a valid user, a call back is
made into the appropriate identity management system(s) to
obtain security roles, groups, and other information associ-
ated with the user 1508. It is understood that this information
can change over time and may need to be refreshed as
discussed elsewhere herein.

By making the authentication and authorization models
flexible, the search system can handle not only user/group
identification models but can handle a variety of different
identification and authorization schemes. In one example, a
hard dependency on OID and GUID-based ACLs can be
removed through use of the flexible, extensible framework,
which in one embodiment can allow customers to implement
a custom interface to a directory (a ‘Identity Plugin’) and
connect SES to that directory via the plug-in. Likewise,
GUID-based ACL stamping can be replaced by Authoriza-
tion plug-ins that permit customers to define their own
security model for each source.

Current authorization models would require SES to first
be registered to an OID server in order to perform secure
search. At crawl time, the crawler provides ACLs which
indicate which users can access a document. The ACL
consists of grants and denies to individual users or groups all
of which must exist in OID. The ACL grant and deny
information is pushed into the text index in the form of text
attributes EQGRANT and EQDENY. Optimization is done
in the case of datasource level ACL to only publish the
datasource id to the text index to prevent re-indexing of the
entire source in the case of ACL changes. As shown in the
exemplary configuration 1600 of FIG. 16, authentication of
the user is performed using an authentication module 1604,
such as may rely upon form authentication or in the case of
SSO, using the SSO authentication. In all these cases, the
user GUID is obtained from the OID server 1602 and the
secure search is made. For the search itself, the groups for
the current user can be obtained from OID 1602 and a query
such as ((PUBLIC OR <userguid> OR <groupl> OR
<group2> . . .) WITHIN EQGRANT and NOT (PUBLIC

10

15

20

25

30

35

40

45

50

55

60

65

22
OR <userguid> OR <groupl> OR <group2>) WITHIN
EQDENY) added to retrieve all documents with the right
grants and no deny privilege to the specific user or group.
The result can be further filtered using an XDB ACL
mechanism at the row level, which again talks to the OID
server to retrieve the group information for the user.

A flexible, extensible approach then can rely primarily on
two main components: a flexible authentication module and
a flexible authorization module. An authentication module is
responsible for validating and authenticating users, while the
authorization modules provide a mechanism for controlling
document access based on arbitrary security attributes.

A principal responsibility of an authentication module in
such an embodiment is to authenticate and validate users and
groups against an identity management system. These mod-
ules can replace an existing authentication framework, such
as may depend explicitly on OID. A customer can implement
their own custom identity plug-in to provide an interface
between SES and any identity management system that suits
their needs. SES can provide a default implementation so
that existing implementations will continue to work without
change, and datasources that rely on existing will not have
to do anything differently. In one embodiment, only one
identity plug-in is active at a given time, the plug-in being
responsible for all authentication activities throughout the
application. A developer interface for identity plug-ins can
assume a hierarchical structure based on users and groups.
Individual data sources requiring authorization based on the
actual user/group model implemented by the currently active
identity plug-in can achieve their needs without additional
work. This will be referred to herein as an identity-based
security model.

For user-defined data sources with authorization require-
ments that do not fit the user/group model, authorization
plug-ins can be used to provide a more flexible security
model with authorization based on security attributes similar
to document attributes. Authentication can still be handled
by an identity plug-in. This will be referred to herein as a
user-defined security model. With an authorization plug-in,
a crawler plug-in can add security attributes similar to
document attributes. The values for the security attributes
can be indexed in FIELD sections, for example. The autho-
rization plug-in can be invoked at login time, as shown in
FIG. 13, discussed above, to build security filters that will be
automatically appended to the query string. These security
filters can be applied against the values of the security
attributes for each document. Only documents with security
attribute values that match the security filter will be returned
to the user. In this way the GRANT and DENY attributes are
opened up to admin and data source implementers.

There are several advantages to such a flexible, extensible
mechanism, as registration with an identity management
system or directory service, such as OID, is not required.
Further, an Admin password for the directory may no longer
be required. A plug-in then can be used in any identity
management system, including databases, files, tables, etc.,
for authentication. Such a mechanism also allows for cre-
ating custom authentication code for connecting to different
directories, as well as custom authorization methods that are
not restricted to users and groups in the directory. If any of
the authorization plug-ins cannot self-authorize, or if there
are errors when returning the filter for the query, the data
from that datasource(s) can be silently dropped. The query
log then can indicate the exception stack traces. This behav-
ior can be similar to that of query time authorization.

Other advantages include the ability to allow a flexible
authentication scheme to be able to plug-in any authentica-

US 9,467,437 B2

23

tion module. Such systems can be independent of database
technology such as Xbase, and can allow security attributes
to be directly associated with data sources, as well as
providing a way to resolve user authorization to entire data
sources. Such a system can provide for an identity-based
security model using only an authentication module, can
allow crawler plug-ins to supply security attributes in lieu of
user/group ACLs, and can allow for a flexible authorization
scheme by which hits from a user-defined data source can be
filtered based on the values of security attributes provided by
the crawler. Such systems also can utilize large security
filters, which can be necessary for cases where the security
filters provided by the user are quite large, such as in the case
of HR applications.

Secure search is enabled in one embodiment by activating
an identity plug-in. An admin application allows a user to
add new Identity plug-ins, which can emulate the OID or
any other identity management system. The identity man-
agement system can be a simple set of database users and
roles, a file based JAZN plug-in, a proper LDAP directory,
etc. New plug-ins can be registered at any time, and inactive
plug-ins can be deregistered at any time. Authentication in
this embodiment will not register the database with the
directory server, but will simply record the attributes such as
host, port, username, and password to connect to the direc-
tory. An admin can create a user or application entity
anywhere on the directory and assign appropriate creden-
tials. The app entity or user may need enough privileges to
perform Validate user operation to validate logins.

In order to implement a user-defined security model, a
crawler plug-in manager can implement an interface such as
a UserDefinedSecurityModel interface, which provides a
method that returns the name of the class implementing an
authorization manager interface, and the names and types
(e.g., GRANT or DENY) of the security attributes used to
build the security filter for a given user. All security attri-
butes can be required to have string values. The crawler
plug-in can simply set the attribute values corresponding to
each security attribute. Security attributes values can be
stored in a text index using field sections, or can be stored
using MDATA sections from field sections. Values in field
sections are tokenized. To avoid generating multiple tokens
from one security attribute value, certain constraints for
security attribute values can be set. When the crawler
accepts a document which has invalid security attribute
values, the crawler rejects the document and logs the error
message to the log file.

In order to access secure search, users typically will be
required to login, such as through a form login page, a Web
service API, or through a single sign-on mechanism. These
or other methods can call an Identity plug-in module,
passing in the username and password or other identifying
information. When authenticating with a plug-in, a configu-
rable timeout can be used to handle cases in which the
Identity plug-in does not return after a specified period of
time. If such a timeout occurs, an error message (e.g.,
“Unable to authenticate™) can be displayed to the user.

After login, document-level access control can be
enforced with a combination of indexed document metadata
and security filters that operate on this metadata. In the case
of identity-based security, the metadata can be communi-
cated via document ACL objects, and a default global
security filter can be generated from data provided by the
active identity plug-in. In the user-defined security case, the
crawler plug-in can supply values for document security
attributes, and filters can be provided by associated query
filter plug-ins.

40

45

50

24

At the startup of an exemplary query application, the
names of the Authorization plug-ins are obtained and new
instances of each Authorization Manager are created. The
Authorization Managers are initialized with the parameters
supplied in the admin screen at source creation time. Every
time a user logs in, and subsequently whenever the security
filters are invalidated, authorization plug-ins are instantiated
with the user name and Servlet Request being passed in. An
authorization plug-in serves as a manager for both the query
filter plug-in interface and a query time authorization result
filter plug-in. The AuthorizationManager interface can be
initialized with parameter values configured from an Admin
tool. The AuthorizationManager can also serve as a factory
for the query filter and result filter plug-ins.

A query plug-in interface can return the security attributes
values that correspond to the currently logged in end-user.
These can be used to construct a user-defined query filter
string to be added to the Text query. For example, if “resp”
is a grant security attribute for responsibilities and if Userl
is logged in, then QueryFilterPlugin.getSecurityValues
(“resp”) should return an array of values corresponding to
the responsibilities of Userl. These values can be used to
build a filter to return the documents authorized for Userl
and her responsibilities.

In order to administer Identity plug-in settings, an admin
user interface can be provided. Such an interface can have
a flow 1700 as illustrated in FIG. 17. The main page for
managing the Identity plug-in in this example is the Identity
Management Setup page 1702. The admin user can view the
details of the current plug-in (if any), register new plug-ins,
activate a registered plug-in, deactivate the currently active
plug-in, or delete inactive plug-ins. An SES system can
include a pre-registered identity plug-in for resources such
as OID. When not connected, the Identity Management
Setup page displays the available (i.e., already registered)
plug-ins. The admin user can select an available plug-in and
remove or activate that plug-in. The Remove command will
remove the selected plug-in. Clicking on the Activate button
will take the user to the activate page 1704 for the selected
plug-in. The admin user can also register a new plug-in by
selecting ‘Register New Plug-in’, which goes to the Register
Plug-in page. The register plug-in page allows the admin
user to register new Identity plug-ins. This can be done
regardless of the connection state (i.e. whether or not a
plug-in is currently active). The user must enter the class
name and jar file for the Identity Plug-in Manager. The jar
file containing all the classes must reside in a search/lib/
plugins directory, for example. Clicking on Cancel returns
the user to the Identity Management Setup page without
registering the plug-in. Clicking on Finish will register the
plug-in if the provided information is valid, and return the
user to the Identity Management Setup page. If the user
clicks on Finish but the information is not valid (e.g. class
can’t be loaded), an error page is shown indicating the nature
of the failure. The combination of class name and jar file
name for each Identity plug-in manager must be unique.

When the admin user selects a registered Identity plug-in
and clicks on Activate, the user is taken to the Activation
page. The class name, jar file, version, and description for
the selected plug-in are displayed. The user then enters the
values for the parameters needed to initialize the Identity
Plug-in Manager class. The authentication format (the for-
mat used to log in to the query app) must also be specified
here. Clicking on Cancel returns the user to the Identity
Management Setup page without activating the plug-in.
Clicking on Finish will activate the plug-in if the provided
information is valid, and return the user to the Identity

US 9,467,437 B2

25

Management Setup page. If the user clicks on Finish but the
information is not valid, an error page is shown indicating
the nature of the failure.

When a Identity plug-in is active, the Identity Manage-
ment Setup screen will display a connection message, as
well as the parameters and authentication format for the
active plug-in. A ‘Deactivate’ button will appear. Upon
clicking the deactivate option, the user will be taken to a
confirmation screen. Depending on the confirmation, the
directory may not be deactivated. In either case, control
returns to the setup screen in the corresponding state (con-
nected or not connected). The Activate button will be
disabled when there is already an active plug-in. If the user
tries to select and remove the currently active plug-in, an
error page will be displayed.

A page flow 1800 for administering user-defined source
level settings is illustrated in FIG. 18. The Admin UI flow
can force the user to an Authorization setup screen 1802
before creating a new User-defined source through a create
source page 1804. When creating a user-defined source
based on a crawler plug-in that implements a user-defined
security model interface, a two-step flow is utilized. The first
step is to enter the crawler plug-in parameters 1902, such as
is shown in the exemplary create source page 1900 of FIG.
19. The authorization settings are then configured. If a
default authorization manager class name is returned by the
crawler plug-in manager, this class name will be filled as a
default in a “Authorization Plug-in” page 2000, such as is
illustrated in FIG. 20, and the parameter list 2002 will
automatically be loaded. If no default is given or the admin
wishes to override the default, the class name and jar file can
be entered, and “Get Parameters” clicked to retrieve the list.
Once the parameter values have been entered, the admin
may click “Create” to finally create the user-defined source.
If an authorization plug-in is specified, the admin tool will
perform validation to make sure the supplied parameter
values are valid, and that the authorization plug-in supports
the security attributes 2004 exposed by the crawler plug-in
and this set of security attributes is sufficient to determine
authorization, including at least one GRANT attribute. Edit-
ing the Authorization settings for a user-defined source that
implements the UserDefinedSecurityModel interface is very
similar to Step two of the creation process. At this point,
however, the Authorization Manager class is fixed.

FIG. 21 shows an example user-defined source page 2100
including an ACL table 2102 that contains an additional
column: Format 2104. This indicates the format of the
principal being entered, such as Simple, DN, or GUID. This
can mirror the authentication format configured for the
IdentityPluginManager.

As discussed above, an SES system can also provide for
federated searching. In order to provide SES-SES federation
in one embodiment, a WS API in used to communicate with
remote SES applications. Methods in the WS API for user
authentication can include, for example, proxylLogin and
login. A federator can use these methods for proxy authen-
tication and simple authentication, respectively. In the
secure search mode the federator can fetch the correct
username mapping from the Identity plug-in based on the
authentication attribute that was registered with the feder-
ated source. There will be functionality in the plug-in
interface to get this mapping. In secure mode, if broker and
endpoint SES instances use different user authentication
attributes, the broker SES must translate or map the user
identity of the logged in user to authenticate the user against
an endpoint SES. Identity plug-in registered on the broker
SES can do the mapping of the user identity to the authen-

10

15

20

25

30

35

40

45

50

55

60

65

26

tication attribute that was registered with the federated
source. In the case where the Identity plug-in registered at
the broker cannot do the mapping, the mapping can also be
done at the endpoint using the Identity plug-in registered
there.

Creating a federated source in one embodiment involves
two parameters: Source Name and Web Service URL. Fed-
eration can be supported to search applications that imple-
ment SES WSDL. An authentication section of a create
federated source flow can involve three parameters: Remote
Entity Name, Remote Entity Password, and Search User
Attribute. For the Remote Entity Name and/or Password,
each SES instance can have federation keys in the form of
federation entity username and password. When any remote
SES instance wants to federate to this instance, the instance
needs one of the federation keys for this instance. When
creating a federated source, the parameters Remote Entity
Name and Remote Entity Password correspond to the fed-
eration key for the remote SES application. The Search User
Attribute here is used by the remote SES instance for user
authentication. For example, by default for SES connected
to OID the search user attribute is username. An identity
manager can use this attribute name to get the value of the
attribute corresponding to the logged-in user and pass the
name to the remote SES as a user credential for authenti-
cation.

With a flexible authentication model, there is no need to
depend on a directory such as OID to provide application
entity username/password for S2S authentication and proxy
login. Each SES instance can have its own Federation entity
and password. This entity can be used in S2S authentication
and proxy login for federation between two SES instances.
Each SES instance can have multiple such entities for
multiple remote SES instances that want to federate to that
instance. These entities can be configured in a separate page
under global settings as shown above. An admin can con-
figure each entity such that the authentication during fed-
eration is performed either by SES itself or the identity
plug-in by selecting the option associated with the entity
configuration.

Since security and access parameters can change continu-
ally, it can be necessary to update various information
throughout the system. In one example, a security filter (e.g.,
SQE) is refreshed during query and document service. When
a login user is authenticated, the user security filter can be
forced to refresh by calling a routine such as refreshSecu-
rityFilter. During query and document service (i.e., browse
and cache), the security filter may only be refreshed when it
is stale. A method such as isSecurityFilterFresh can deter-
mine whether a user security filter is fresh. An example of
a process 2200 for refreshing a security filter is illustrated in
FIG. 22. In this example, at login 2202 a determination is
made as discussed above as to whether the user is authen-
ticated 2204, and if so the user’s security filter is refreshed
2206. At query time cache 2208 can be checked and it can
be determined whether the user’s security filter is fresh
2210. If so, the query can be allowed and a text query can
be run with SQE 2214 to obtain a hits list 2218, and a
document service can check to determine whether the secu-
rity filter allows the user to see the document 2216. If so, the
docservice returns the document to the user 2220, and if not
an error message (or a null result) can be returned 2222. If
the user’s security filter is not fresh, the filter can be
refreshed 2212 as discussed elsewhere herein before pro-
ceeding.

In one embodiment, a Userl.ogin.Validate method is
invoked to validate the user. The method calls the Identity

US 9,467,437 B2

27

plug-in module, passing in the username and password. To
save the time for updating the security filter at query time,
the user security filter can be updated every time when a user
logs in, regardless of the freshness. A refreshSecurityFilter
method can be used to refresh a given user’s security filter
if necessary (e.g., where the filter is stale). If a value of
TRUE is given to an attribute such as force_option, the user
security filter can be refreshed regardless of the freshness.

Search Hit URL and Metadata Modification

In many existing search systems, the hits or results
returned in response to a search query include URL hyper-
links to access the original documents. If a search hit
represents a document or item in a Web application, the
destination URL may be specific for each user. If the
application item is crawled generically, this URL will need
to be rewritten for each search user. Furthermore, a search
hit may relate to a logical set of items (e.g. an email message
and its attachments) which may be represented by different
URLs in an application.

Documents typically are indexed to have the document
contents and metadata including information such as the
URL. When doing a typical search the user will want to
receive URLSs in a returned browser page as each URL will
direct the user to the appropriate application page, site,
application, etc. Typically, these URLs are obtained at crawl
time, which is not sufficient for enterprise applications, such
as eBusiness suite, for example, where the server names and
addresses change continually. The URLs then cannot simply
be stored as persistent data on disk, as the index would have
to be continually refreshed and would often be out of date
and could return erroneous URL values. Further, as the URL
information can include millions and millions of rows of
data, it is undesirable for efficiency, bandwidth, and other
purposes to continually have to re-crawl all this information
(i.e., to compensate for changes in server name, port, etc.).

An approach in accordance with one embodiment
addresses these and other problems by obtaining a somewhat
generic URL that is stored as a search hit resulting from a
crawl. At query time, there then can be a callback mecha-
nism used to dynamically manipulate the generic URL to a
URL that is specific to the user making the query. In this
way, when the query or search results are returned to the
user, the user receives links that are active and valid for that
particular user, directing the user to the appropriate site,
application, etc. Such an approach is not straightforward,
however, as many applications also use dynamic URLs. For
example, an application make take information identifying
the user’s current session, encode that session information in
some proprietary way, then generate a URL including the
encoded information. A URL modification approach as
described herein can work with such applications, as the
callback mechanism provides the application with the docu-
ment, metadata, and user session information, and the appli-
cation generates the appropriate URL for the user in that
session. The URL then can include any dynamic informa-
tion, encryption, etc., needed for the target application. The
appropriate links then can be returned to the user as a result
of the secure search query. Such a mechanism does not
require any modification of the applications, but can be
implemented through an API or other interface at a higher
level.

FIG. 23 illustrates an exemplary configuration 2300 for
implementing such an approach. This configuration utilizes
a text index 2304 and a query layer 2302 for accepting a user
query. Before results of the query are returned to the user,
there is a callback into the application 2306 from a module
2308 operable to modity the URL as discussed herein and

30

35

40

45

55

28

generate a callback. The callback provides the document
from the crawl, the metadata, and the user information. The
application then generates a dynamic URL that is accurate
for the application, user session, etc., such that when the user
selects that URL the user will be directed to the appropriate
application page, etc.

FIG. 24 illustrates step of an exemplary method 2400 for
providing such modified information. In this method, an
SES crawler can crawl a group of documents (or other data
sources) across an enterprise 2402, and can further crawl
documents outside the enterprise. A copy of at least a portion
of'each crawled document, along with the appropriate meta-
data, then can be stored and accessible to SES, and each such
document can be indexed appropriately 2404. The metadata
for a document can include a generic URL where appropri-
ate. When a query is subsequently received for a user 2406,
a callback is made into the respective application with the
crawl document, metadata, and user information for the
querying user 2408. A response then is received from the
application that includes a dynamically generated URL that
is accurate for the current user and session 2410. As dis-
cussed elsewhere herein, the metadata for the document also
can be modified accordingly.

In one embodiment, a Java plug-in object (e.g., Result-
FilterPlugin) is allowed to rewrite the URL returned to a
search user. This operation is performed at query time, just
prior to the results being returned to the user. From this
search result set, every document belonging to a filtered data
source is passed through the plug-in for that source. An
object such as a Documentlnfo object representing the
document can provide methods such as getDisplayURL()
and setDisplayURL() to access and modify the URL. For
secure results, the rewriting process may take into account
the currently logged-in search user. The URL may also be
rewritten based on environment specific parameters. The
resulting URL may be created on the fly or to a pre-existing
URL, such as a hyperlink pointing to the main body of a
message as opposed to an attachment. Such an approach
provides for integration between secure search and deep
links into Web applications customized for each user and
search query, where in the past, a destination URL for a
search hit would be generic and commonly shared.

Since callbacks are being made into the applications, each
application can also decide whether to show or provide
URLSs or documents based on the current user/session infor-
mation. Such an approach can prevent a user from accessing
a resource, for example, to which that user previously had,
but not longer has, access. Further, such an approach can be
used to modify not only the URL but also any of the
metadata. For example, number of documents such as a
purchase order documents might be represented in several
different languages. It then is desirable to show at least a title
and possible a summary of the document to the user in an
appropriate language for the user. With the URL modifica-
tion architecture, the callback mechanism can be used to go
back to the application and ask the application to modify
URL or other information for the appropriate language. The
application in one embodiment actually modifies the title
and description of the document that are returned to the user.

The callback can further go against the previous results
obtained at query time, and need not result in another full
crawl. In one embodiment, Web services is used for the
callback mechanism, and can act as an endpoint that can be
called into. This provides an extensible mechanism to call
into a third party application module where current infor-
mation is fed and an application can dynamically changes
the URL(s) and/or metadata that are returned to the user in

US 9,467,437 B2

29

response to the query. Such an approach provides for across
different identity authenticating systems (e.g., email,
exchange, etc.) using the appropriate APIs. Authentication
can be normalized so that identifies can be recognized across
disparate systems as discussed elsewhere herein.

Suggested Content with Attribute Parameterization

Suggested content can provide functionality similar to
that for suggested links, but in this case rather than returning
just links, a query application can respond to certain queries
with information that is relevant to those queries. This
information could be in the form of link(s) or the actual data
content. For example, if a user is searching for directory
information of a person and enters (dir xyz) as a query, a
suggested content provider like Aria could return a URL
pointing to the directory page for user xyz or can simply
return all contact information of that person (e.g., email
address, phone numbers etc.) and the query application can
render this information in the search page along with the
result list.

Suggested links provide a way to associate a specific fixed
URL with a query token, whereby if a user enters a query
which contains the specified token, the associated URL is
returned along with the search hit list. A Suggested Content
feature also provides a way of mapping queries to specific
URLSs. However, suggested content can provide a facility for
capturing parameters from the query string and inserting
those parameters into the associated URL according to a
URL template. Further, rather than simply returning the
URL that results as a link, SES can actually fetch the XML
content associated with the URL and apply a supplied
stylesheet to generate an HTML fragment. The resulting
HTML fragment can be rendered on the search page of the
default query app, and will be available via the Web Services
APL

When using suggested content with search, information
can be crawled and indexed as discussed above, then results
for a query can be returned to the user. Often there is data
that cannot be crawled, such as transaction data or data that
is changing too quickly, or because the data is from systems
that cannot be accessed as they are out of the control of the
SES system. In many of these situations the addition of
suggested content would be useful. In order to provide
suggested content, a group of triggering words can be
provided and a group of providers registered. As used
herein, a provider can be any type of application, search
system, etc., that, when given a keyword, can return a set of
results. For each of these providers, a regular expression,
etc., can be registered such that when any of the triggering
keywords is received in a query or search from a user, a
corresponding registered provider is triggered. For example,
if a user submits a query including the term “travel” and
“travel” is a triggering keyword, information for the user
and/or query can be submitted to a travel-related provider
and any information returned from that provider can be
displayed to the user along with the search results as
suggested content. If the query contains a term such as “San
Francisco,” then the returned content can include travel-
related content pertaining to San Francisco, such as a list of
airfare deals to San Francisco from the user’s location, if
available.

Suggested content also can be used with enterprise appli-
cations, which typically are transactional systems. A user
might type in a term such as a client name, and the suggested
content may relate to the latest expense reports or upcoming
calendared meetings relating to that client, for example. This
transactional type of information happens in real time and is
not easily crawlable as discussed above. It still is desirable,

10

15

20

25

30

35

40

45

50

55

60

65

30

however, to enter a quick query into the SES system and
have such results returned. While existing approaches
attempt to obtain such information from suggested content
providers, such system usually use URL template with a
fixed format. The template indicates what and where to send
the query and the provider does what it will with the data.
A provider understands the appropriate AP, then a query is
received in a standard form from the API, such as:

< query >
...abe

< /query >

which includes the query, terms, and other information in a
fixed URL scheme. In order for the provider to be able to
understand this protocol, it was necessary to code an exten-
sive set of logic as simply function calls such as POST or
GET will not work in such situations.

Systems and methods in accordance with various embodi-
ments provide a more flexible and extensible mechanism by
parameterizing the URL to avoid the need for a fixed
protocol. The URL instead can be templated. If you provider
is located at, for example, “a.b.c”, the URL can be param-
eterized to recite, in URL syntax, something such as:

https://a.b.c/ . . . 2c=S$ora:date&d=S$ora:userid
In this way, the URL template can be parameterized such
that values for attributes such as “date” and “userid” can be
filled in dynamically at query time. These attributes can
include, for example, date, user ID, location, etc. The URL
thus can be created in template form with “$” values that
will be substituted at run time with the actual data values for
the appropriate user, session, and/or query. It then is possible
to simply follow the dynamically generated URL to obtain
the information to return to the user. Such an approach is
simple and flexible as there is no fixed protocol and the
template is very extensible. Further, it is not necessary to
write systems that have to parse and consume these fixed
templates that are coming in, as this is just a URL packet that
can easily be made to work with servlets, JSPs, etc.

Further, a suggested content mechanism can incorporate
the security necessary for enterprise applications. Using
such a URL template, the security credentials for a user can
be passed with the URL such that separate security mecha-
nisms do not have to be established prior to the query. For
other real-time providers, it is necessary to first establish
security between the two systems, which can be problematic
due to the need to pass user session information, etc. An
extensible template mechanism can take advantage of a
group of predetermined and other values for these templates
such as user ID, user authentication credentials, etc., which
can easily be passed through the URL. Templating the URL
it makes it much simpler to implement a suggested content
provider, and the implementation can be done in a secure
fashion.

Such an approach differs from known content suggestion
technology as an actual query is being used to dynamically
create a URL that transforms the query so the query can be
propagated to the appropriate provider. The information is
not just fixed information such as data or user 1Ds, but can
include information extracted from the query string itself.
Previously, all the URLs would just be blindly passed such
that the backend system or application would have to
interpret the URL and thus had to be more sophisticated.
SES can instead provide the ability in a search configuration,

US 9,467,437 B2

31

for example, to match terms such as “bug” followed by a six
digit number, etc. Any appropriate six digit number then can
be substituted in the URL, such that the bug system need not
know anything about how the user entered the query, or even
what was the original query string. Such flexible templates
also provide for other functionality such as processing
synonyms of a term, such as by matching “problem” or
“case” for “bug,” etc. This then allows for the use of hybrid
regular expressions, whereby match terms may not just be
simple keywords but can include sophisticated text operators
(i.e., synonyms). For example, query can express a “syn-
onym of (bug)” which can match anything in the bug family.
If the user types in any of these terms, the suggested content
provider can know how to match and process the term(s).
This allows for sophisticated processing without significant
additional coding.

Such an approach makes the provider simple, and param-
eterizes the URL with things such as the current environ-
ment (e.g., user, userlD, username, session, locale, data, etc.)
and information about the user’s identity (as this is also
linked with the identity management system). Security
information such as the role(s) of the user (e.g., project
manager, etc.) can also be included, which are very unique.
A search provider can be as simple as reciting $ora:$A1
(attribute A1). It is possible to simply go to the identification
system for this user to determine the value for Al, then
substitute that value. A user can have a lot of associated
information, such as local time zone, address, managers,
etc., all of which can be parameterized and sent to the
backend very easily. The suggested content provider also
does not have to process the entire query, but can instead
process extracted portions of the query that are relevant to
the suggested content provider.

FIG. 25 illustrates steps of an exemplary method 2500 for
providing suggested content in accordance with one embodi-
ment. In this method, an SES crawler can crawl a group of
documents (or other data sources) across an enterprise 2502,
and can further crawl documents outside the enterprise. A
copy of at least a portion of each crawled document, along
with the appropriate metadata, then can be stored and
accessible to SES, and each such document can be indexed
appropriately 2504. The metadata for a document can
include a generic URL where appropriate. A series of
triggering words can be established 2506, and a set of
content providers registered 2508. When a query is subse-
quently received for a user 2510, a determination is made as
to whether the query contains any triggering words 2512.
For each triggering word, the query can be transformed into
a URL that includes any appropriate user, session, and
security information necessary to access the appropriate
enterprise content 2514. The results then are received from
the provider(s) and transmitted to the user as suggested
content 2516.

FIG. 26 illustrates an exemplary process 2600 by which
SES can interact with a provider. In this process, for each
provider 2602 a determination is made as to whether SES
has authenticated the provider 2604. If not, a check is made
to determine that the provide is a secure provider 2606. A
pattern match then can be checked 2608, after which the
URL can be mapped 2610. If necessary, a login message can
be sent 2612. The request is then submitted and handled
2614, after which the request is ignored 2616 or the results
rendered 2618 and returned 2620. FIG. 27 illustrates a
hierarchical overview 2700 of the integration with the query
application. This exemplary overview shows the relation-
ship between the user query 2702, search result 2704,

10

15

20

25

30

35

40

45

50

55

60

65

32

suggested content result 2706, local query 2708, federation
search 2710, and triggered providers 2712.

In one embodiment, a pattern match is based on the
information from the categories such as provider, user, and
query. The provider information can be defined through an
admin tool and retrieved from database, the information
being refreshed if there is any change. Each provider can
have a single instance object for the whole query applica-
tion. The end user information can be fetched based on a
query http request such as browser/agent type, browser host
name or [P, browser language setting, and previous cached
information from login. Some user account information can
be retrieved through a security plug-in from OID or other
LDAP directory. The query information can be fetched
based on the current http request. The query information can
include, for example, the query string, current source tab
name, info source group ID, query language, etc.

Such a Suggested Content feature can extend a suggested
link framework to support the display of real-time content
that is relevant to a user query. This can involve a keyword-
based retrieval of data from content providers in XML
format, for example, with an optional transformation of the
data using XSLT or XQuery, and placement of the results in
the result list. The placement can be in a configurable
location based on, for example the “shape” (e.g., height and
width) of the data. Suggested links allow users to be directed
to a particular Web site for a given search string. For
example, when users search for (Oracle Secure Enterprise
Search documentation) or (Enterprise Search documenta-
tion) or (Search documentation), the SES system could
suggest a URL of the technology page of www.oracle.com.
In a default search page, suggested links can be displayed at
the top of the search result list, or at any other appropriate
location. This feature can be especially useful to provide
links to important Web pages that are not crawled by SES.

A suggested content mechanism can allow SES adminis-
trators to register triggers mapping to URLs for suggested
content providers, along with XSLT style sheets for render-
ing the returned content. The resulting content is distinct
from the search results and can be displayed anywhere. Such
a system also can support secure access to suggested content
results, can include support for access to suggested content
in a Web services API, and can allow for configuration of the
number of SC results to display. The mechanism also can
provide a facility for uploading suggested content provider
configuration data (query pattern, provider URL, style sheet)
from an XML source, can support Xquery as an alternative
to XSLT for SC style sheets, can support internal as well as
external SC sources, and can allow configuration of the
presentation of SC results (e.g., size/shape, location on
search page).

Each provider can be checked against its own pattern, in
order, such as in a Suggested Content thread. The provider
pattern is REGEX based in one embodiment, such as may be
implemented based on a jdk java.util.regex package. The
regex pattern for each provider can be pre-compiled. After
the pattern is checked, the matched groups can be are
returned as a MatchResult object. If the end user query
matches the provider pattern, the actual provider URL is
returned as result. The provider URL template can be
defined during provider setup in an admin tool. The URL
template can be defined in a way to support URLs such as
Google OneBox provider URLs, as well as URLs for other
providers with more generic XML over an http interface.

A group of common variables can be pre-defined which
can be used in the provider URL template, representing the
end user and query information. A portion of the information

US 9,467,437 B2

33

such as query string, source group ID, etc., can be used for
the provider pattern match. The URL template for each
provider can be parsed once into a string array. Variables
defined in the provider URL template can be replaced by the
actual value for the current user query or empty string. The
new URL then can be the actual URL for the provider, and
can be ready for launching an HTTP or HTTPS request. A
common format for variables in such a URL is given by the
following:

$ora:variableName
where “ora” and variable names are all case sensitive. All the
$ora:variableName instances in the URL for the trigged
provider will be replaced by the appropriate variable value
based on the current user query, etc. Supported variables can
include, for example, $ora:lang, $ora:q and $ora:username.

A dedicated thread pool can be utilized for a Suggested
Content (“SC”) feature. If a user query matches a provider
pattern, steps such as sending the request to provider,
waiting for a response, parsing, and rendering the result can
be treated as a single task to be queued in the thread pool.
The SC thread can be notified when each provider search
completes. The SC thread can end when, for example, there
are enough providers returned, the global time out is
reached, or all searches complete.

For secure providers, pattern matching can be processed
only when the end user is authenticated, such as by SES or
by the provider. If the query from the authenticated SES user
matches the pattern defined for the secure provider, the
Suggested Content module can submit the final provider
URL, which includes the authenticated SES user informa-
tion, to the provider to further authenticate and authorize the
user. The Suggested Content module can provide the end
users with messages other than the suggested content if user
authentication by the provider fails. An SES Suggest Con-
tent module may not always handle security directly for the
drilldown links created by the providers.

For a cookie based implementation, the end user can be
required to manually login whereby the provider can set
domain level security cookie, the name of which can be
defined while setting the provider in an admin tool. The
provider should be able to find the user information based on
the cookie. For S28 option, the provider user identification
can be based on the user information from the SES login,
and can be mapped into another field by a security plug-in.
The field in the SES security repository can be specified
during setting of the provider. The provider URL can specify
whether SSL over HTTP is going to be used for the provider
search.

The query application can maintain cached copies of all
necessary provider information, which can be kept fresh by
using a versioning mechanism similar to the one used for
security plug-ins. On the query side, whenever provider
information is required, the database can first be queried to
determine whether the cached info is stale, and reload the
information from the database if the cached information is
stale. The version information can be maintained in the
PL/SQL layer (i.e., every time provider info is added or
updated, a version number will be incremented) and read by
the mid-tier query code.

As discussed above, regular expressions can be used to
define query patterns for suggested content providers.
Parameter values to be extracted from the query and cached
for insertion into the template URL are specified in one
embodiment using parentheses, which is a standard capture
group mechanism that can be provided by a Java regular
expression API (e.g., java.util.regex). Subsequently, named
parameters in the template URL can be replaced by the

10

15

20

25

30

35

40

45

50

55

60

65

34

captured values or other user-specific data according to the
rules below. In one embodiment, the following exemplary
parameters are supported in the provider template URL and
are replaced with capture group values or user data as
described:

The expression $ora:qn, where n is a positive integer, will
be replaced by the nth capture group in the regular
expression, or the empty string if there is no corre-
sponding numbered capture group.

The expression $ora:q in the template URL will be
replaced by the entire query expression.

The expression $ora:username in the template URL will
be replaced by the logged-in username, or the empty
string if the user is not logged in.

The expression $ora:lang will be replaced by the two-
letter code for the current browser language.

All parameter names are assumed to extend until the first
ampersand (&) character following the initial dollar sign ($),
or the end of the string, whichever comes first. “$ora:” is the
reserved word for the variable prefix in the provider url
template. The implementation of the provider should avoid
using the reserve word if possible.

Suggested content triggers can support the empty string as
a query pattern, which will be considered a match for every
query. As an example usage, this might be used to serve up
advertisements on every query page. The diagram of FIG. 28
illustrates the data flow 2800 involved in a query triggering
a SC result. In this flow, a query from the query engine 2802
undergoes pattern matching (for triggering words) at a
matching module 2806 of the SES midtier 2804, and then
passes to a module 2808 for generating a URL for secure
content that is passed to the secure content provider 2810.
The secure content provider can send an XML result 2814
back to the midtier, which can extract and generate the
relevant HTML fragment 2812 including the suggested
content to be returned to the user.

As discussed above, in a default query application page
2900, suggested link results 2904 can appear above the
search results 2906, while suggested content results 2902
can appear below any suggested links 2904, above the query
results 2906, such as is illustrated in FIG. 29. The style sheet
registered for the individual query patterns can control the
size and style of the suggested content results. The final
‘look and feel’ of the suggested content section can depend,
for example, on the content returned by the SC providers. If
a query results in suggested content, the page may not be
rendered until the content is available, or until the timeout
period has expired. Suggested content may not be displayed
for advanced search queries, and no content from secure
providers may be displayed if the user is not logged in to
SES. Content from public providers can always be displayed
if available. In a typical setup, it is unlikely that a query
would match more than one or two provider patterns. In any
case, however, a maximum number (e.g., at most 20) of
provider requests can be invoked for a given query. The
results then can be rendered on a first-come, first-rendered
basis up to the maximum number of provider results speci-
fied by the admin user.

As support for a Suggested Content feature may not be
supported by components of existing systems, such as an
existing WSDL interface, a search result object for an SES
Web service may only contain an array of suggested links for
a given query. The WSDL will require additional operations
to access suggested content for different providers. To avoid
any backward compatibility problem, signatures for existing
search methods may remain unchanged, with a new search
method (e.g., getSuggestedContent) instead being added that

US 9,467,437 B2

35

can return suggested content in either HTML or XML
format. The parameters to such a method can be the query
string and a string representing the desired return type. The
return types supported in one example are XML and HTML..
A reason for providing at least two different return types is
that the end-user may wish to apply a custom style-sheet in
a custom search U, so the user can request XML and
therefore will not have to depend on the rendering style used
on the default SES query application. A new complex data
type, such as SCElement, can be added in the WSDL
definition. Unlike alternate keywords and suggested links,
suggested content may not be returned as a part of a search
operation. The user may have to invoke one of the above WS
operations explicitly to get the suggested content.

Integration of SES and a suggested content provider
application can handle secure access to the suggested con-
tent through SES. When an end user makes a search on an
SES application, the SES application can be able to grab the
authentication information for the user, if available, and pass
that information to the SC provider in a secure manner.

One approach to handling the security for an SES-SC
provider integration utilizes cookie-based authentication. In
this approach it can be assumed that a single security cookie
is domain based, and that SES and the provider are hosted
on the same domain, such that SES can access the cookie for
the provider and is able to be authenticated through the
cookie from the provider as the end user. An end user is
authenticated by the provider before the user is able to
access data from the provider. Once the user is authenticated
by the provider, an appropriate cookie is set for the user to
maintain a session. SES is notified of the cookie used by the
provider for the authentication, such as during registration of
the SC provider. When the end user makes a search on SES,
SES can grab the cookies from the request header for the
user and pass the cookie information on to the SC provider.
If the cookie is valid, the SC provider will return the data;
otherwise, the provider can return an appropriate error
message. SES itself need not be protected by SSO, as SES
simply acts as a carrier of information between the end user
and the SC provider. It can be a requirement that the
verification of authentication cookies not depend on the IP
address of the client IP address, as the request will be made
by SES and not the query end-user.

For a default query application, when the end user is not
authenticated successfully by the provider, SES can behave
in different ways. For example, SES can ignore the SC
provider and just return the normal hit-list without showing
any suggested. Alternatively, SES can show an information
message in the suggested content display area for the SC
provider that the user has not logged into the SC application
and hence cannot see any information there. The unauthor-
ized user action can occur when the user is not logged in, for
example, which can occur when: the specified session
cookie for the provider is not available from the user’s http
request; the specified cookie has expiration other than “the
end of session” and the expiration time is earlier than current
timestamp; the specified security cookie for the provider is
there but the http request with this cookie to the provider is
returned with 401 status code; or the provider is Google
OneBox compatible, the xml element “<resultCode>" is
checked and the value is “securityFailure” (plan).

Another approach utilizes S2S based authentication. In
this approach a mutually trusted relationship is established
between the SES application and the SC provider applica-
tion. Any user already logged into SES application need not
be authenticated by the provide application again. The SC
provider application can simply trust the request coming

10

15

20

25

30

35

40

45

50

55

60

65

36

from SES on behalf of the end user and provide the data for
the user. To establish the mutually trusted relationship
between the two applications, the applications share the
trusted entity. The provider implementation allows the
trusted application to act as the proxy for the end user and
also honors the end user permission to perform the search.

The trusted entity can be a (proxy) user configured in an
Identity Management system used by the SC provider appli-
cation, or the trusted entity can be just a name-value pair
such that the SC application can extract the entity informa-
tion in the request coming from SES and authenticate that
information. This trusted entity and its password can be
defined during the registration of the SC provider. Proper
permission on the entity must be given in the provider
security repository so the entity can proxy other end users in
the provider system to do the search for the end users based
on the provider URL.

In order to support a case where the provider and SES use
different information to identify the end user, such as where
SES uses user “name” and an e-business provider uses user
“email” as user login identification, and SES also needs a
name such as “email” for the mapped attribute in the SES
user repository for the end user to be defined. For end user
identification, there can be a number of situations. First, the
username format on the SC application can be different than
on the SES application. The username format used by SC
provider then should also be registered along with the
trusted entity as a mapping attribute. The Identity plug-in
registered on SES should be able to translate a username like
“name” value from SES to SC format like an “email” value
based on the mapping attribute. In another situation, the
same user identification may be used for both of the SES and
the provider, such that no map format should be defined for
this provider.

Self-Service Sources for Secure Search

An enterprise can have an inventory control system
containing data regarding inventory levels, a catalog system
describing product data, an accounting financial reporting
system containing data relating to costs of products, an
ordering system containing delivery schedules, and a cus-
tomer system containing customer relationship information,
etc. In addition, some data may be connected to proprietary
data networks, while other data sources may be connected to
and accessible from public data networks, such as the
Internet.

Information within a single enterprise also can be spread
across Web pages, databases, mail servers or other collabo-
ration software, document repositories, file servers, and
desktops. Further, many data sources are protected from
certain individual users. For protected sources, a crawler is
needed that has the ability to index documents with the
proper access control list. That way, when end users perform
such a self-service search, only documents that they have
privileges to view will be returned. No existing solution
allows a user to self-service search across the entire enter-
prise data through the same interface, fully globalized in
multiple languages.

When secure content is crawled, credentials must be
supplied to be able to crawl the data. In some instances, the
data is not controlled by the same person who controls the
search system, or the data is not configured in the same
manner to allow an individual end user to provide a con-
sistent set of user security attributes, such as username and
password. Another issue is that the administrator for an
enterprise search system may not have access to all data as
found in a service-to-service (S2S) arrangement or a broad
set of login information for certain target repositories unless

US 9,467,437 B2

37

a trust relationship has been established between the target
application and an enterprise search application. In situa-
tions where a search administrator does not have full autho-
rization to access a data source, providing search over the
protected content within the enterprise may not be possible.

Systems and methods in accordance with embodiments of
the present invention can overcome these and other defi-
ciencies in existing search systems by providing a self-
service source for secure enterprise search. A self-service
source secure enterprise search application can authenticate
and crawl as an individual end-user. Self-service authenti-
cation allows end users to enter the user credentials needed
to access an external content repository. The secure enter-
prise search then can crawl and index the repository, using
these credentials to authenticate as the end user. In one
embodiment, only the self-service user may be authorized to
see these documents in their individual search results.

In one embodiment, an administrator sets up a self service
source within a secure enterprise search application system
by first creating a template source and defining a target data
repository without including any credentials needed to crawl
that repository. From a search application, an end user can
view a customize page and subscribe to the template source
by entering the appropriate user credentials in an input form.
A new user-subscribed source then is created, along with a
copy of the template schedule. The secure search system can
create an access control list (ACL) for this user to be applied
to the user-subscribed source. User-subscribed sources can
be viewed in a page such as a “Home-Sources-Manage
Template Source” page, and the associated schedules can be
administered accordingly. Any changes applied by the
administrator to a template source then can be dynamically
inherited by the associated user-subscribed sources for the
next crawl.

To further set up a self-service source system, a secure
enterprise search application can allow an administrator to
configure the template source to describe a predetermined
unit of secure documents within which the end user may
view returned results. This template defines the location of
the repository along with other crawling and query settings.
However, the credentials for the crawl are omitted from the
template. An end user of the search system may subscribe to
a template in the query application interface by providing
their own credentials to the target repository. The user’s
self-service source then can be crawled at a time determined
by the search administrator to prevent denial of service
attacks against the target repository. The personalized end
user source is linked to the template source and can inherit
settings from the template source. Further, a child relation-
ship to additional sources (i.e., related sources) can allow for
changes in the target sources. Specifically, the personalized
end user source can map directly to the related sources
during the time the self-service source system settings
remain active. Such a system also provides the capability for
an administrator to determine how long such settings should
remain active. A copy of a template schedule assigned to a
new source can be held in a log by the administrator, and a
personalized source then can be stamped with end-user
ACL.

The self-service source can match an individual’s end
user credentials with the template source. During crawl,
authentication can be accomplished by augmenting the
individual end user and the source credentials with certain
target repositories. In this way, each individual user’s docu-
ments on the target repository are only available for search
to that particular user.

20

25

30

35

40

45

60

38

A crawler then can be launched on the personalized target
sources and not on the generic template sources. To accom-
plish this task, the secure enterprise search crawler applica-
tion can obtain seed URLs or server addresses from the
template sources, as well as username and password data
and/or other subscription parameters from the current end
user’s subscribed source. Source group membership can be
manually handled by the administrator. Each self-service
source can store the credentials of an individual end user,
and at crawl time it inherits the rest of its configuration from
the template source. In this way, the configuration of the
template source can be modified at any time without requir-
ing each user to re-subscribe to the template.

During crawl, the crawler can authenticate with the target
repository as the individual end user. The repository may be
unaware of this arrangement, as the crawler appears to be a
normally authenticated user. As a result, no special setup is
required on the target application. The documents crawled
for any particular self-service source are stamped with that
end user identity. In this way, each individual’s documents
on the target repository are only available for search to that
particular user. This self-service security model for crawling
credentials allows a search administrator to configure the
crawl of a target repository without requiring broker access
to the repository. Self service crawl can support at least two
source types, including Web applications (e.g., with single
sign-on enabled) and e-mail.

Self service e-mail sources can require an administrator to
specify an IMAP server address, and the end user to specify
the IMAP account user name and password. According to
this embodiment, self service Web sources are limited to
content repositories that use a single sign-on (SSO) authen-
tication process. SSO is an integral portion of this embodi-
ment of a secure enterprise search system. The administrator
can specify the seed URLs, boundary rules, document types,
attribute mappings, and crawling parameters, and the end
user can specify the single sign-on user name and password.

The basic model for self-service sources can be extended
to allow the template source to designate additional param-
eters (i.e. subscription parameters) that can be provided by
the subscribing user. Some examples are to allow a user to
specify which e-mail folders to craw (e.g. just Inbox and
Pending Messages), an external web site address to crawl
(e.g. http://w3.org/XML/Query/), or how much of the cal-
endar to crawl (e.g. next and last 7 days). This and other
information can be entered when subscribing to a template.
However, in some of the previously mentioned scenarios, a
search administrator may require authorization by launching
a workflow in order to subscribe. For the e-mail example, the
administrator could configure the template to specify:
Server:imap.us.com; Directory on server to store cache files:
/scratch/mail/cache/; E-mail folders to crawl: specified by
user. Then, when subscribing to this template, the end user
would enter: Username; password; E-mail folders to
crawl—“Inbox” and “Pending Messages”.

The default security model for self-service sources also
can be extended to allow a user to specify a group (as defined
in an identity or directory server) that can view the docu-
ments. Under the default rule, only the subscribing user may
view the documents crawled for that source. The extended
security model can be done as part of the process to
subscribe to a template source. For example, a manager may
wish to crawl all of the functional specification documents
for the manager’s group, which may be stored in a content
server. If the template were set up by the search adminis-
trator, the manager could subscribe to the template, enter the
folder path to the manager’s group functional specifications,

US 9,467,437 B2

39

and then specify the manager’s group name as authorized to
view the crawled documents. This can be viewed as a subset
of the example above, allowing for additional parameters. In
this way, a member of the authorized group then can view
documents for that particular group by entering the specified
folder path. This can be an important example, however, as
it concerns the default security model of self-service sources
to allow only the subscribing user to view the user’s docu-
ments. This example illustrates the ability to specify a
trusted group that could also view these documents.

FIG. 30(a) illustrates steps of a method 3000 for utilizing
a self-service source in accordance with one embodiment. In
this method, an administrator defines a template source for
self-service sources 3002 and defines a target data repository
without required security credentials 3004. An end user can
subscribe to the template source and enter user credentials
3006, whereby a new user-subscribed source is created 3008
along with a copy of the template schedule. An access
control list is created for the end user to be applied to the
user-subscribed source 3010. Changes to the template
source can be dynamically inherited by the user-subscribed
source for the next crawl 3012. The self-service source can
match the end user’s credentials with the template source
3014, such that during crawl on the personalized target
sources, authentication can be accomplished by augmenting
the individual end user and the source credentials with
certain target repositories to the documents on the target
repository are only available for search to that particular user
3016.

Minimum Lifespan Credentials for Crawling Data
Repositories

As discussed above, it is desirable to provide a secure
search mechanism to provide for searching over any and all
content, such as across an enterprise. A secure search,
however, requires access to the secure content repositories
holding the data to be searched. In some cases the creden-
tials required to crawl a repository may be extremely sen-
sitive, or the user may be reluctant or unwilling to store user
identification information in memory or on disk for any
longer than is absolutely necessary. Storing passwords in a
repository can provide a mechanism, for example, by which
hackers can access multiple systems. In cases such as these,
it can be desirable for the search system to store username,
password, or any other such authenticating information for
the minimal amount of time required in order to crawl the
data. Traditionally, these credentials are stored in the search
system along with the other settings for a data source, which
can be a default setting, but a user or administrator, for
example, may select not to allow such information to be
stored. It therefore is necessary to provide a way to provide
search capabilities for these situations.

Systems and method in accordance with various embodi-
ments allow a data source configuration to indicate that
credentials for crawl on that source should not be stored
permanently with the remainder of the settings. Such an
approach can require a manual launch by an administrator or
user with sufficient credentials in order to crawl, for
example, an enterprise or backend repository. In one
embodiment, a constraint is placed on the crawler schedule
so that it cannot be launched automatically, since it will
require human intervention to provide the credentials for
crawl. When a crawl is subsequently launched, the search
system can detect whether the source and/or user has a
“temporary passwords” or other such setting enabled. If so,
the administrator or user can be prompted to enter the
required credentials, such as through a popup window of an
appropriate GUI or an interstitial page in a web application

10

15

20

25

30

35

40

45

50

55

60

65

40

flow 3050 as illustrated by the screen of FIG. 30(5). After the
sensitive crawling credentials are entered, the credentials
can be stored in appropriate temporary storage (such as
cache or resident memory) and can deleted as soon as
possible. In one embodiment, the table sources require a
database link that is used throughout the crawl, and then is
deleted when the crawler finishes. In another embodiment,
the credentials are deleted when the crawl for the source is
started successfully, or when the crawling schedule is
stopped, paused, or interrupted for any reason. The creden-
tials also can be deleted when the host system is restarted,
in which case the credentials are removed upon first start of
the search system.

Such a temporary password feature allows a search
administrator or user to indicate that a highly sensitive set of
credentials should not be stored permanently on the search
system. This gives higher control to an organization in
managing security, as well as to individual users with
security concerns.

FIG. 31(a) illustrates an exemplary process 3100 for
providing minimum credential lifespan in accordance with
one embodiment. In this process, an administrator setting up
a source specifies that the source will use temporary pass-
words 3102. At crawl time, the source metadata is examined
to determine whether the temporary password option is
selected 3104. For a source with the temporary password
option, the administrator is prompted to enter the security
credential information necessary to crawl that source 3106.
The security credentials are written to temporary storage
3108. The crawler reads security credentials, then deletes
these credentials and any link to those credentials as soon as
they are no longer needed 3110. The crawler then fetches
and indexes the documents 3112. This deletion in one
example is done at the end of a crawler callback, while in
other systems the credentials may simply be stored in
memory for the crawler process then deleted when no longer
necessary. Such a process also can be done for an individual
user, whereby the user can set an attribute specifying that
security credentials for the user should not be stored on the
system and that the user should be prompted for credential
information before searching, querying, etc.

In some cases multiple sources can be crawled sequen-
tially with the same crawler process, and if more than one of
these sources has this feature it may be necessary to retain
the security credentials until they are no longer needed by
the crawler to access any of the multiple sources to be
crawled. If different credentials are used for each source,
then the user can have the option of entering all the creden-
tials before the crawl begins, or entering the credentials for
each source as they are needed. All information can be
stored automatically by default, but user can have the option
of entering the information manually instead as needed. The
user may then lose any ability to crawl those sources
automatically. For example, FIG. 31(b) illustrates an exem-
plary temporary passwords timeline 3150.

As mentioned above, if a crawl is stopped, the system
reboots, or there is another such cause for premature stop-
page of the process, the credentials can be cleared from
memory. There can be hooks in the relevant code so that, in
the event of any stops or restarts, the source can be checked
to determine whether the source has the temporary password
feature enabled, and if so, any references to the credentials
can be deleted. If system restarts, any credentials stored
under this feature can be deleted.

Other embodiments allow the ‘temporary passwords’
option to be enabled for self-service sources. In such a
self-service setup, the crawler schedule will be controlled by

US 9,467,437 B2

41

an administrator. The credentials will be provided by the
end-user when subscribing to the source. This contrasts with
the generic scenario for temporary passwords, in which the
administrator would provide the secure crawling credentials
at crawler launch time. However, in the self-service scenario
for temporary passwords, the credentials will be deleted
upon next crawl. This will allow for a one-shot crawl of the
data, unless the credentials are subsequently re-entered by
the end user. The credentials will likely be stored for much
longer in this setup, as the crawler schedule is not controlled
by the user and will therefore be likely to launch much later.

Suggesting Web Links and Alternate Terms for Matching
Search Queries

As discussed elsewhere herein, suggested links returned
with a search results page can allow an administrator, source
provider, etc., to define URL hyperlinks to be presented to a
user in response to a search query. Any suggested links that
are returned can supplement the search hit list. This feature
can be used to register a set of links to authoritative web
pages and have those displayed at the top of the search
results, for example, or to register a set of links to Web pages
that are not crawled, but still have them returned for certain
search queries. This feature also can allow an administrator
to map search queries directly into Web applications.

Further, alternate keywords can be used to allow a search
system to provide a user with alternative keywords to be
used for a search query. These alternative terms can be
useful for fixing common errors that users make when
entering search queries, such as spelling mistakes, or for
suggesting different keywords, such as synonyms, product
codename, acronyms, or abbreviations.

In order to provide these features for an installed search
system, an administrator must configure these systems such
that they are triggered for appropriate search queries. This
can be tedious if specific query terms are specified or
computationally expensive if a flexible match such as regu-
lar expressions are used.

Systems and methods in accordance with various embodi-
ments can provide improved functionality by taking advan-
tage of a text rule index, such as is supported by Oracle Text
(CTXRULE), which allows matching rules for suggested
links and alternate keywords to be specified in a flexible and
performant manner. A suggested link or alternate keyword
definition in accordance with one embodiment is a mapping
between a rule pattern and a hyperlink or alternate term.
These definitions can be stored in a search configuration
repository, for example, can be used to build a rule index that
maps a query string to a set of matching suggested links and
alternate keywords. The rule language can allow for the use
of certain operators to define the matching rule pattern for a
suggested link. The operators can include AND, OR, NOT,
PHRASE, STEM, ABOUT, NEAR, WITHIN, or THESAU-
RUS.

Utilizing a text rule index for matching search queries to
suggested link and alternate keyword definitions stored in
the search system, an administrator is given a flexible means
to specity hyperlinks or alternate search terms for incoming
queries. Such a system is more flexible than a strict string
equality match, more performant than full regular expres-
sion support, and utilizes some traditional linguistic Text
features such as word stemming.

An application such as Oracle Text typically uses standard
SQL to index, search, and analyze text and documents stored
in a database, in files, and on the web. Oracle Text can
perform linguistic analysis on documents, as well as search
text using a variety of strategies including keyword search-
ing, context queries, Boolean operations, pattern matching,

10

15

20

25

30

35

40

45

50

55

60

65

42

mixed thematic queries, HTML/XML. section searching, and
so on. The application can render search results in various
formats including unformatted text, HTML with term high-
lighting, and original document format. Oracle Text supports
multiple languages and uses advanced relevance-ranking
technology to improve search quality, and offers features
such as classification, clustering, and support for informa-
tion visualization metaphors.

Embodiments in accordance with the present invention
can take advantage of such text rule index functionality to
index on actual incoming search queries, instead of simply
performing document classification as in current usage sce-
narios. Such a feature allows for the defining of rules that
can be applied to a query in order to locate the links or
alternate keywords that most closely match the query. As
discussed above, existing ways of matching keywords typi-
cally use patterns or regular expressions that are defined.
Using a text rule index feature allows an index to be created
for the rules to be used for the query. Subsequently, when a
query is received, a matching procedure can use the rule
index to determine the rule that most closely matches the
query.

A query containing a text expression with multiple terms
then can be matched in a number of different ways using a
rule language and applying the rules to each variation. For
example, a search expression such as “dog sled” can be
examined using variations such as “dog AND sled,” “dog
OR sled,” the phrase “dog sled,” or using a stem such as
“Wog.” Each of these variations can match different rules
that can have associated therewith different suggested links
or alternate terms. The different results then can be scored to
determine which provide the best match to the query in order
to suggest links or terms that are most appropriate for the
query.

There also can be additional features to improve the
results. Synonyms, terms in other languages, and several
other variations also can be built into such a feature. such a
feature also can consider uni-grams, bi-grams, tri-grams,
and quoted phrases. When multiple phrases exist in a query,
the longest phrase can be matched first in order to provide
the most likely suggestions. Variations also can include
iterative term replacement, nesting, space ignoring or add-
ing, analysis of word boundaries, and case sensitive match-
ing.

FIG. 32 illustrates a flow 3200 for returning suggested
links and alternate keywords to a user in response to a search
query. In this flow, a method such as getResult() is called to
get the suggested links and alternate keywords in response
to the search query, passing the actual text query or portions
thereof. The method call can be received by an application
instance 3204 operable to call methods such as getSug-
glinks() and getAltWords() to get a set of suggested links
and alternate keywords to be returned to the user. A database
adapter 3206 can tokenize the query string and pass the
tokenized string to a query package 3208 operable to query
the repository 3210 and receive back the links and alternate
keywords based on the rule index. Arrays of data then can
be returned to the application instance, which can do a
matching of the data in the arrays to determine the suggested
links and alternate keywords to be displayed to a user in a
search results page 3202 for the query.

FIG. 33 illustrates steps of an exemplary process 3300 for
determining suggested links and/or alternate keywords that
can be used with a flow such as that of FIG. 32. In this
process, a rule index is defined for a repository, application,
or source 3302. When a search query is subsequently
received from a user 3304, the query string can be tokenized

US 9,467,437 B2

43

3306 and a rules index can be applied to variations of the
tokenized query string 3308. The results can be matched
with the original query 3310 to determine suggested links
and/or alternate keywords to be displayed to the user in a
search results page 3312.

Secure Search Performance Improvement

Systems and methods in accordance with embodiments of
the present invention also can provide for the pushing of
user-defined security attributes. An exemplary process 3400
for pushing such user-defined security attributes to the text
index is illustrated in FIG. 34(a). In this process, during
crawling, user-defined security attributes are sent to crawler,
which stores those attributes into a table 3402. When index-
ing is called, the stored security attribute values are pushed
into the text index 3404.

An exemplary process 3406 for using secure search is
illustrated in FIG. 34(b). A search user needs to log in to
query page to do a secure search 3408. After the user passes
the authentication, SES checks whether there is a fresh
security filter for the user 3410. If the security filter for the
user already exists and it is fresh enough, then the security
filter is obtained from a table 3412. If there is no security
filter for the user, or stored security filter is stale, then SES
communicates with identity plug-in and an authorization
plug-in to obtain authentication and authorization informa-
tion for the user, creates a security filter for the user, and
stores the filter into a table 3414. The security filter is
appended to the query 3416. Finally, the whole query string
is executed and hit list is returned 3418.

Link Analysis for Enterprise Environment

As discussed elsewhere herein, a secure enterprise search
system can search crawled pages within a repository and
calculate a link score for each crawled page using any of a
number of standard scoring algorithms. However, standard
link score algorithms do not work well for the enterprise
environment. One reason for this problem is the occurrence
of same host links, for example. Generally speaking, pages
which have more incoming links have higher link scores.
For example, all child documents might have links to a top
page or parent document. In this case, the top page gets a
very high raw link score. This kind of thing can be seen very
frequently in the enterprise environment, like a site which
has a users manual or some internal web application. To
avoid these biased scores, an improved secure enterprise
search system ignores the links within the same host during
the link score calculation.

The link score calculation is called as a post-indexing
process. The link information (which page has a link to
which page) is stored in a table with a flag that indicates
whether the link is the same host link or a different host link
during crawling. During the link score calculation, same
host links are ignored and only the different host links are
counted. After the link score calculation, some documents
have the link score of the document. Since SES ignores same
host links, there are documents that do not have the link
score. At this point, the link score is a small fractional
number. SES can bucketize the link score into, for example,
1, 2, 3, 4, and 5. A bucketized link score of 5 can be given
to the top 0.5%, 4 to the following 1.5%, 3 to the next 8%,
2 to the next 20%, and 1 to the others (70%). As described
already, there are documents that have no bucketized link
score. The bucketized link score can be pushed into the text
index using LIN tag (stands for LINkscore) of a MDATA
section. The value in the MDATA section can be updated
without re-indexing the whole document. Since the text

10

15

20

25

30

35

40

45

50

55

60

65

44

indexing is completed before the link score calculation, SES
can store the bucketized link score (1, 2, 3, 4, or 5) to each
documents” MDATA section.

During query time, the most relevant documents for a
query should be shown first. Documents that have a higher
link score are regarded as more relevant documents. Since
SES returns hits in Oracle Text’s scoring order in one
embodiment (Oracle Text uses an inverse frequency algo-
rithm based on Salton’s formula), SES needs to push up
Oracle Text’s score of the documents that have higher link
score. For example, the Oracle Text query string that finds
documents that have query term “ORACLE” and bucketized
link score 5 looks like:

ORACLE and MDATA(LIN,5)

Here, MDATA(LIN,5) is used to find documents that have
“5” in MDATA tag “LIN”. This query is not sufficient
because the query cannot find documents that have “4” in
MDATA tag “LINK”. So more conditions can be added.

ORACLE and
(MDATA(LIN,5), MDATA(LIN,4), MDATA(LIN,3),
MDATA(LIN,2), MDATA(LIN,1))

This query string finds documents that have query term
“ORACLE” and linkscore 1, 2, 3, 4 or 5. A higher text score
can be given to documents with linkscore 5 than for others.
To satisfy this, SES can use a weight operator, such as is
given by:

ORACLE and (MDATA(LIN,5)*15, MDATA(LIN,
4)*12, MDATA(LIN,3)*9, MDATA(LIN,2)*6, MDA-
TA(LIN,1)*3)

By giving different weight for different linkscore, SES can

map linkscore to Oracle Text score.

A method 3500 for providing improved link analysis for
a secure enterprise search system is illustrated in FIG. 35.
This method is called as a part of crawling pipeline process
after indexing 3502. The calculated raw link score is buck-
etized to either 1, 2, 3, 4, or 5 based on the link score value
3504. Then, the bucketized link score is pushed into the
Oracle Text index using MDATA section 3506.

For example, a returned results list with pages such as
Refresh, Left Border, CVS Repository, Products, and Cus-
tomer Profiles is replete with examples of same host links.
The previous list with the entire URL listed shows the top 10
results using all links. On the other hand, a list that includes
results such as Oracle Corporation, Oracle Partnet Network,
Oracle Corporation Metalink, Support Time Scheduling,
Legal Notices, Interim Privacy Notices, and Oracle Products
is a better list than the one above with fewer instances of
same host links in the results returned to the end user.

Propagating User Identities in a Secure Federated Search
Environment

As discussed above, information within a single enter-
prise can be spread across Web pages, databases, mail
servers or other collaboration software, document reposito-
ries, file servers, and desktops. Further, many data sources
are protected from certain individual users. A secure enter-
prise search system that can provide uniform search capa-
bilities across multiple repositories would increase enter-
prise productivity. The administrator for an enterprise search
system may not have access to all data if the data is collected
in a service-to-service (S2S) arrangement or a broad set of
login information for certain different target repositories
unless a trust relationship has been established between the
target application and an enterprise search application. For
example, one application of the enterprise may require user
name, domain and log-in password. However, another appli-
cation may require information such as a last name, second
password, and department. In situations where a search

US 9,467,437 B2

45

administrator does not have full authorization to access a
data source, providing search over the protected content
within the enterprise may not be possible.

It therefore can be desirable to provide a “generic” or
universal framework that allows for searching across mul-
tiple search platforms in a secure federated search. A fed-
erated source is a repository that maintains its own index. A
secure federated search is therefore one that is capable of
searching across multiple indexes, each with its own identity
management system that is unique from other management
systems across the enterprise. A federated broker can be used
to transform a user search query for each of a group of
disparate sources so that each transformed query instance
has the appropriate syntax for the respective source. The
federated broker then can merge the results from the data
sources, remove any duplication from the multiple sources,
and present the results in a unified format to the user so that
the results appear to have come from a single source. A
secure enterprise search system with a universal framework
is able issue a search whereby a repository can return results
even across multiple repositories that each require different
security authentication.

It also can be desirable to provide a crawler to collect data
from these multiple disparate sources, where the crawler is
a component of an overall secure enterprise search system
capable of implementing a software solution that propagates
user identities in a secure federated search system. In a
unified framework a single user query can be used to search
against multiple disparate local or remote data sources or
search applications, the results from these data sources then
being merged based on some predetermined criteria, such as
relevancy scores of items in the results and a single unified
result is returned to the user. Typically federated search
involves a broker search instance to which the end user
submits a search query and the broker translates and submits
the query to multiple disparate search instances on behalf of
the end user. Query translation, hit-list merging, de-dupli-
cation are some of the well known problems in existing
federated search approaches.

In the context of secure federated search, each of the data
sources or search instances involved can have a unique way
of enforcing security as to which data is accessible for search
by an end user. For example, access policies can be based on
users or groups, at a document level or data source level, etc.
Each of the search instances also can be connected to
different identity management systems to authenticate a user
and enforce access privileges. However, one challenge is
that one user may have different identities and credentials on
different identity management systems. In this case, a user
could be identified by a username on one system and by an
application user identifier on another system. Thus, passing
user credentials from one system to another is not always
feasible. In federated search, when a broker search instance
federates the query to different search instances on behalf of
a user, the user identity must be translated appropriately for
different search instances.

Systems and methods in accordance with various embodi-
ments overcome the aforementioned and other deficiencies
in existing federated search systems by providing a universal
framework for a secure enterprise search system that is
capable of propagating user identities across a federated
search environment. The framework can utilize a federation
broker operable to federate the query system to each feder-
ated source, configured on the broker, on behalf of the
authenticated end user. The method used to propagate the
end user identity and user query to the federation endpoints
can depend upon the configuration of the federated sources

25

30

40

45

50

46

and/or the search instances themselves. In a federated search
environment, each search application has a different authen-
tication and identity management process, such as is illus-
trated in the configuration 3600 of FIG. 36. A user can
provide user authentication information and search or query
information through a user interface 3602, such as a standard
browser search page. The can be received by a secure
enterprise search system 3604 for an enterprise 3622, which
can handle the user authentication and authorization as
discussed elsewhere herein. The SES system can include a
federated engine based on a universal framework 3606 that
can utilize a federated broker 3608 to translate a query from
the user for each of a plurality of different applications or
sources 3610, 3612, 3614 across the enterprise 3622. Since
each of these sources can be associated with a different
identity management system 3616, 3618, 3620, the feder-
ated broker can obtain the authenticated user identification
information and normalize or translate the user identities
from the various sources. The broker can propagate the
transformed queries to the sources and receive back the
results. The federated broker then can consolidate the fed-
erated search results to be displayed in a search results
display page of the user interface 3602. In this way, one
common unified framework can be used to obtain and
display results for an end user.

FIG. 37 illustrates steps of an exemplary method 3700 for
propagating user identities in accordance with one embodi-
ment of the present invention. In this method, an end user
logs in and is authenticated to the SES system 3702. A
federated broker can obtain the individual user credentials
for each source to be searched across the enterprise for the
authenticated user 3704, and can normalize and translate the
user identities from the various sources 3706. When a query
is received from the user 3708, the federated broker can
translate the user query for the various sources 3710, and can
propagate the translated queries to the various sources using
the normalized user identities to access each source, appear-
ing to each source as the end user 3712. When the federated
broker receives back the results from the sources 3714, the
broker can consolidate the results to be displayed to a user
in a uniform manner 3716.

User identities also can be propagated using a universal
framework for secure federated search when the same end
user has different identities on different search applications.
For example, one search application may utilize an identity
management system requiring user name, password, and
domain for logging in, while a second search application
within the same enterprise system may require information
such as a first name, last name, and a second password. In
such cases, the various user identities can be mapped appro-
priately by the broker or endpoint before secure search is
performed. This mapping can be accomplished by an iden-
tity plug-in, for example, that can be registered on the search
application based on the mapping attribute in the identity
managements (IDM) system.

In accordance with one embodiment, propagating user
identities in a secure federated search may also be imple-
mented in a single sign-on (SSO) federation environment. In
SSO, all search instances are connected to the same identity
management system IDM, and the broker instance is pro-
tected by SSO. No special configuration typically is needed
for secure federation. If the SSO is based on cookies, the
broker can pass the SSO cookie for an authenticated user
seamlessly to the endpoint application for each query, and an
endpoint application can authenticate the user based on the
cookie.

US 9,467,437 B2

47

FIG. 38 illustrates steps of an exemplary method 3800 for
propagating user identities with a single sign-on (SSO)
process in accordance with one embodiment of the present
invention. In this method, an end user logs in and is
authenticated to the SES system 3802. Since the system
utilizes SSO, all search instances are connected to the same
identity management system such that a federated broker
can simply obtain the user credentials for SSO 3804. When
a query is received from the user 3806, the federated broker
can translate the user query for the various sources 3808, and
can propagate the translated queries and SSO identity cre-
dentials to the various sources in order to access each source,
appearing to the source as the end user 3810. When the
federated broker receives back the results from the sources
3812, the broker can consolidate the results to be displayed
to a user in a uniform manner 3814.

Auto Generation of Suggested Links in a Search System

When searching using a standard Web-based search
engine, for example, the search result page for a user often
will include links to pages containing content related to the
user search. Such links can help to user navigate to other
sites that might be of interest, and might be setup by a
manual mapping or association of links with keywords in the
search. For example, when searching using a keyword such
as “car,” an automotive Web site might have an agreement
with a search provider that a link to that site will be
displayed as a suggested link whenever the term “car”
appears in the search query. This suggested link then can
appear regardless of whether the link appears in the search
results. When a user is crawling the Internet, for example,
the user might not care which links are returned as search
results and which are displayed as suggested links. When a
user is searching across an enterprise, however, the user
might have certain expectations as to the types of search
results that will be returned. When searching across an
enterprise system, the pages or documents of that system
might include links to external pages. For example, an office
services page might include a link to the U.S. Postal Service.
A user searching for a term such as “mailing address™ across
an enterprise will not expect to see a link to the external US
Postal Service site in the enterprise results. Such informa-
tion, however, may still be useful to the user. These links
also can have anchor text providing a brief description of the
link, such as “patent” for a link to the U.S. Patent and
Trademark Office. These links can be fetched during a crawl,
and a typical search system might either ignore these links,
as they are not part of the enterprise corpus, or show them
in the result page. In the case of the former, the user does not
get these relevant links, and in the case of the latter this
might be confusing if the user is not expecting to see results
not in the enterprise corpus.

Systems and methods in accordance with various embodi-
ments can automatically add these “external” links as sug-
gested links when discovered during a crawl of enterprise
application(s), for example. Keywords for triggering the
suggested links also can be auto-generated, such as by using
anchor text associated with a link or text around a given link.
In some embodiments, the links can actually be traversed to
determine the title or other relevant words from the page,
which then can be added as keywords for the suggested link.
If the crawl is a portal crawl, external links typically are
represented as URL items, which can be processed in the
same way.

Finding a URL that is not in the enterprise corpus can be
difficult, as crawlers typically are configured with boundary
rules and URLs that are outside the boundary may be valid
candidates for consideration. However, during a crawl of

30

40

45

48

other enterprise sources these URLs might themselves be
crawled, such that it can be desirable to purge the links from
the suggested link section as they are no longer considered
to be external links. During a crawl, then, any URL that is
crawled that is the same as an auto-generated suggested link
can be dropped from the suggested links section.

An advantage to such an approach is that external links
can easily be separated from actual content in the corpus.
For example, FIG. 39 shows a configuration 3900 wherein
a user, through a user interface 3902, can attempt to search
across an enterprise 3914. SES 3904 can receive the request,
and a crawler 3906 can attempt to crawl the appropriate
applications 3908, 3910, 3912 or sources across the enter-
prise. During the crawl, the crawler 3906 might locate a link
to an external site 3916. It would be desirable to be able to
easily and automatically separate the information from the
external site 3916 from information contained within the
enterprise corpus 3914. Further, it would be desirable to
automatically generate suggested links and keywords using
this “external” information that would make it easy for users
to identity pages of “related interest.”

An exemplary process 4000 for generating such suggested
links is illustrated in FIG. 40. In this process, a boundary is
defined as to the corpus to be searched 4002. A crawler then
can begin crawling across an enterprise 4004. When the
crawler encounters a link that is outside the corpus bound-
ary, the crawler can automatically store that link as a
suggested link for the search 4006. If a suggested link is
encountered within the boundary during the crawl, then that
link is removed from the list of suggested links 4008. Upon
completion of the crawl, a mechanism such as relevancy
scoring can be used to determine which suggested links to
show to the user, separate from the search results, along with
the number of suggested links to show 4010. In other
embodiments, the administrator or user can set how many
suggested links to be shown.

Using such a process, any tag or link that is discovered
through a crawl can be used to populate the search result list
or a suggested link list. An advantage to such an approach
is that a user searching for a term such as “patent” on the a
company site can automatically be provided with a link to
the patent office as a suggestion, which might be very useful
to the user. Further, this suggestion need not have been
mapped or otherwise set beforehand, as this association is
made automatically during the crawl. Further, this external
link is not displayed in the main results, as the user will not
expect to see patent office links when searching within the
company corpus.

The system also can obtain suggested keywords by fol-
lowing an external link. For example, a link to an external
document might simply indicate something such as “doc,”
which is not very useful or descriptive. A crawler can follow
the link, however, then retrieve and parse the document in
order to obtain more useful keywords. In one embodiment,
a crawler automatically attempts to determine the title of the
document and extract useful keywords. For example, the
“doc” link might be associated with a document entitled
“forensic examination,” which can provide useful suggested
keywords (and a useful suggested search phrase) and can be
used to provide appropriate keywords for the suggested link.
In another embodiment, anchor text for these external links
can also be used as keywords. Such an approach can be done
when crawling any appropriate source, such as a Web site,
email application, calendar application, enterprise applica-
tion, portal site, etc. And if during crawling it is determined
that the link is actually part of the enterprise corpus (e.g.,

US 9,467,437 B2

49

another source that is discovered during the crawl), the
suggested link can simply be deleted to clean up the sug-
gested results.
Adding Document Date to Relevant Ranking Factors
When crawling documents, there are cases where it is
preferable to rank documents more highly that have a more
recent “created” or “modified” date. For example, when
searching email messages it can be desirable to give higher
priority to more recent messages, even though the content of
the returned messages might otherwise earn a common
score. Further, in a calendaring system, it can be desirable to
give higher priority to recent meetings with a given client.
In existing systems, most documents that should be ordered
by modified date are instead returned with same relevant
score. It therefore can be desirable to utilize a document
modified date, for example, as a score tie breaking factor.
In one embodiment, a hit list re-rank process is used
wherein documents are fetched one by one from the hit list
that is generated by an inverted text index. The relevant
score of each of these documents then can be adjusted
according to other factors. When fetching each document
and obtaining the relevant score, the modified date also can
be obtained. In order to re-order documents according to the
relevant scores and last modified date, an output buffer can
be used which contains a list of items ordered by keys. A
document, as an item of the buffer, can be inserted and
ranked in the buffer by document key. The buffer typically
will have a limited size, such that whenever the buffer is full
an item with the smallest key can be output from the buffer.
Information such as a revised relevant score, last modified
date, and a sequence number can be inserted into the
document key. The key in one embodiment is an integer
number, with a high segment of digits occupied by the
relevant score, a middle segment of digits occupied by the
last modified date, and a low segment of digits occupied by
the sequence number. The key can be, for example:
(max_relevant_score-relevant_score)*1000000+re-
cency*10000+sequence
where max_relevant_score is 1000, and relevant_score,
recency, and sequence are all integers. Recency in one
embodiment is computed using the following pseudo-code:

recency = Isysdate-last_modified__datel; -- in number of days
when recency >30 then recency = 30 + recency/30;

when recency > 99 then recency = 99;

when recency < 0 then recency = 99.

The value of sysdate here is dynamically generated to denote
current server date. Such an approach allows documents to
be ranked by distance in days from the current time. The
closer to the current day the document has been modified,
the more highly the document will be ranked.

The sequence is the sequence number in which the
document is fetched from the original hit list, such as from
Oracle Text. The sequence number can be used to avoid
duplicate keys, which is undesirable for current output buffer
designs. In one embodiment, last_modified_date and sysdate
are normalized to a standard global time for purposes of
comparison. In federated search case, different search serv-
ers can provide different hit lists, each being ranked using
the same algorithm with the same standard global time, so
that the scores from different servers can be compared and
sorted.

FIG. 41 illustrates steps of an exemplary method 4100
that can be used to provide improved result ranking in
accordance with one embodiment. In this method, a user or

10

45

55

50

administrator, for example, can select at least one attribute to
be used in determining the ranking of query search results
4102. When a query is received from a user 4104, the query
can be run against the appropriate source(s) and the results
stored in a hit list 4106. A hit list re-rank procedure then can
be called that adjusts the relevant score of each document in
the hit list based on the selected attribute(s) 4108. The
re-ranked results then can be returned and displayed to the
user 4110.

In other embodiments, an attribute such as a modified date
can be examined when writing a document to the hit list in
order to modify the relevant score or set an attribute asso-
ciated therewith, such that the documents can be re-ranked
without calling a separate process in a separate step.

Exemplary Operating Environments, Components, and
Technology

FIG. 42 is a block diagram illustrating components of an
exemplary operating environment in which various embodi-
ments of the present invention may be implemented. The
system 4200 can include one or more user computers,
computing devices, or processing devices 4212, 4214, 4216,
4218, which can be used to operate a client, such as a
dedicated application, web browser, etc. The user computers
4212, 4214, 4216, 4218 can be general purpose personal
computers (including, merely by way of example, personal
computers and/or laptop computers running a standard oper-
ating system), cell phones or PDAs (running mobile soft-
ware and being Internet, e-mail, SMS, Blackberry, or other
communication protocol enabled), and/or workstation com-
puters running any of a variety of commercially-available
UNIX or UNIX-like operating systems (including without
limitation, the variety of GNU/Linux operating systems).
These user computers 4212, 4214, 4216, 4218 may also have
any of a variety of applications, including one or more
development systems, database client and/or server appli-
cations, and Web browser applications. Alternatively, the
user computers 4212, 4214, 4216, 4218 may be any other
electronic device, such as a thin-client computer, Internet-
enabled gaming system, and/or personal messaging device,
capable of communicating via a network (e.g., the network
4210 described below) and/or displaying and navigating
Web pages or other types of electronic documents. Although
the exemplary system 4200 is shown with four user com-
puters, any number of user computers may be supported.

In most embodiments, the system 4200 includes some
type of network 4210. The network may can be any type of
network familiar to those skilled in the art that can support
data communications using any of a variety of commer-
cially-available protocols, including without limitation TCP/
1P, SNA, IPX, AppleTalk, and the like. Merely by way of
example, the network 4210 can be a local area network
(“LAN™), such as an Ethernet network, a Token-Ring net-
work and/or the like; a wide-area network; a virtual network,
including without limitation a virtual private network
(“VPN”); the Internet; an intranet; an extranet; a public
switched telephone network (“PSTN™); an infra-red net-
work; a wireless network (e.g., a network operating under
any of the IEEE 802.11 suite of protocols, GRPS, GSM,
UMTS, EDGE, 2G, 2.5G, 3G, 4G, Wimax, WiFi, CDMA
2000, WCDMA, the Bluetooth protocol known in the art,
and/or any other wireless protocol); and/or any combination
of these and/or other networks.

The system may also include one or more server com-
puters 4202, 4204, 4206 which can be general purpose
computers, specialized server computers (including, merely
by way of example, PC servers, UNIX servers, mid-range
servers, mainframe computers rack-mounted servers, etc.),

US 9,467,437 B2

51

server farms, server clusters, or any other appropriate
arrangement and/or combination. One or more of the servers
(e.g., 4206) may be dedicated to running applications, such
as a business application, a Web server, application server,
etc. Such servers may be used to process requests from user
computers 4212, 4214, 4216, 4218. The applications can
also include any number of applications for controlling
access to resources of the servers 4202, 4204, 4206.

The Web server can be running an operating system
including any of those discussed above, as well as any
commercially-available server operating systems. The Web
server can also run any of a variety of server applications
and/or mid-tier applications, including HTTP servers, FTP
servers, CGI servers, database servers, Java servers, busi-
ness applications, and the like. The server(s) also may be one
or more computers which can be capable of executing
programs or scripts in response to the user computers 4212,
4214, 4216, 4218. As one example, a server may execute one
or more Web applications. The Web application may be
implemented as one or more scripts or programs written in
any programming language, such as Java®, C, C# or C++,
and/or any scripting language, such as Perl, Python, or TCL,
as well as combinations of any programming/scripting lan-
guages. The server(s) may also include database servers,
including without limitation those commercially available
from Oracle®, Microsoft®, Sybase®, IBM® and the like,
which can process requests from database clients running on
a user computer 4212, 4214, 4216, 4218.

The system 4200 may also include one or more databases
4220. The database(s) 4220 may reside in a variety of
locations. By way of example, a database 4220 may reside
on a storage medium local to (and/or resident in) one or
more of the computers 4202, 4204, 4206, 4212, 4214, 4216,
4218. Alternatively, it may be remote from any or all of the
computers 4202, 4204, 4206, 4212, 4214, 4216, 4218,
and/or in communication (e.g., via the network 4210) with
one or more of these. In a particular set of embodiments, the
database 4220 may reside in a storage-area network
(“SAN”) familiar to those skilled in the art. Similarly, any
necessary files for performing the functions attributed to the
computers 4202, 4204, 4206, 4212, 4214, 4216, 4218 may
be stored locally on the respective computer and/or
remotely, as appropriate. In one set of embodiments, the
database 4220 may be a relational database, such as Oracle
10g, that is adapted to store, update, and retrieve data in
response to SQL-formatted commands.

FIG. 43 illustrates an exemplary computer system 4300,
in which various embodiments of the present invention may
be implemented. The system 4300 may be used to imple-
ment any of the computer systems described above. The
computer system 4300 is shown comprising hardware ele-
ments that may be electrically coupled via a bus 4324. The
hardware elements may include one or more central pro-
cessing units (CPUs) 4302, one or more input devices 4304
(e.g., a mouse, a keyboard, etc.), and one or more output
devices 4306 (e.g., a display device, a printer, etc.). The
computer system 4300 may also include one or more storage
devices 4308. By way of example, the storage device(s)
4308 can include devices such as disk drives, optical storage
devices, solid-state storage device such as a random access
memory (“RAM”) and/or a read-only memory (“ROM”),
which can be programmable, flash-updateable and/or the
like.

The computer system 4300 may additionally include a
computer-readable storage media reader 4312, a communi-
cations system 4314 (e.g., a modem, a network card (wire-
less or wired), an infra-red communication device, etc.), and

10

15

20

25

30

35

40

45

50

55

60

65

52
working memory 4318, which may include RAM and ROM
devices as described above. In some embodiments, the
computer system 4300 may also include a processing accel-
eration unit 4316, which can include a digital signal pro-
cessor DSP, a special-purpose processor, and/or the like.

The computer-readable storage media reader 4312 can
further be connected to a computer-readable storage medium
4310, together (and, optionally, in combination with storage
device(s) 4308) comprehensively representing remote, local,
fixed, and/or removable storage devices plus storage media
for temporarily and/or more permanently containing, stor-
ing, transmitting, and retrieving computer-readable informa-
tion. The communications system 4314 may permit data to
be exchanged with the network and/or any other computer
described above with respect to the system 4300.

The computer system 4300 may also comprise software
elements, shown as being currently located within a working
memory 4318, including an operating system 4320 and/or
other code 4322, such as an application program (which may
be a client application, Web browser, mid-tier application,
RDBMS, etc.). It should be appreciated that alternate
embodiments of a computer system 4300 may have numer-
ous variations from that described above. For example,
customized hardware might also be used and/or particular
elements might be implemented in hardware, software (in-
cluding portable software, such as applets), or both. Further,
connection to other computing devices such as network
input/output devices may be employed.

Storage media and computer readable media for contain-
ing code, or portions of code, can include any appropriate
media known or used in the art, including storage media and
communication media, such as but not limited to volatile and
non-volatile, removable and non-removable media imple-
mented in any method or technology for storage and/or
transmission of information such as computer readable
instructions, data structures, program modules, or other data,
including RAM, ROM, EEPROM, flash memory or other
memory technology, CD-ROM, digital versatile disk (DVD)
or other optical storage, magnetic cassettes, magnetic tape,
magnetic disk storage or other magnetic storage devices,
data signals, data transmissions, or any other medium which
can be used to store or transmit the desired information and
which can be accessed by the computer. Based on the
disclosure and teachings provided herein, a person of ordi-
nary skill in the art will appreciate other ways and/or
methods to implement the various embodiments.

The specification and drawings are, accordingly, to be
regarded in an illustrative rather than a restrictive sense. It
will, however, be evident that various modifications and
changes may be made thereunto without departing from the
broader spirit and scope of the invention as set forth in the
claims.

What is claimed is:

1. A method for authenticating users in a secure search
system for searching a plurality of secure data sources, the
method comprising:

receiving, using one or more processors, user identifica-

tion information from a user in a secure enterprise
system (SES);

providing, using the one or more processors, the user

identification information to a plurality of identity
management systems in the SES, wherein each of the
plurality of identity management systems receives the
user identification information through a respective
Application Program Interface (API);

US 9,467,437 B2

53

validating, using the one or more processors, the user
against at least one identity management system in the
plurality of identity management systems;

crawling, using the one or more processors, at least one

secure data source in the plurality of secure data
sources residing on a plurality of different computer
systems that is associated with the at least one identity
management system,

building, using the one or more processors, an index of

documents from the at least one secure data source
based on the crawling;

receiving, using the one or more processors, a query from

the user;

calling back, using the one or more processors, at query

time into the at least one identity management system
to obtain security attribute values for the user;
appending, using the one or more processors, the security
attribute values for the user to the query and using the
appended query to query the index of documents; and
determining, using the one or more processors, one or
more documents from the index of documents in the
plurality of secure data sources, that are responsive to
the query and accessible to the user based on the
security attribute values for the user and respective
security attributes of the one or more documents.
2. The method according to claim 1, wherein a number or
type of objects required from the user identification infor-
mation by a first identity management system in the plurality
of identity management systems is different from a number
or type of objects required from the user identification
information by a second identity management system in the
plurality of identity management systems.
3. The method according to claim 1, wherein the security
attribute values for the user comprises information selected
from a group consisting of: role information, group infor-
mation, and project information.
4. The method according to claim 1, further comprising:
receiving, using the one or more processors, user identi-
fication information from an additional user in the SES;

determining that the additional user cannot be validated
against the at least one identity management system;
and

denying the additional user access to the at least one

secure data source.

5. The method according to claim 1, wherein the security
attribute values for the user change between receiving the
user identification information and receiving the query from
the user.

6. The method according to claim 1, wherein the one or
more security attributes for the user comprises at least one
grant attribute or at least one deny attribute.

7. The method according to claim 1, wherein each of the
plurality of identity management systems is associated with
a respective secure data source.

8. A non-transitory, computer-readable storage medium
comprising instructions that, when executed by one or more
processors, cause the one or more processors to authenticate
users in a secure search system for searching a plurality of
secure data sources by performing operations comprising:

receiving user identification information from a user in a

secure enterprise system (SES);

providing the user identification information to a plurality

of identity management systems in the SES, wherein
each of the plurality of identity management systems
receives the user identification information through a
respective Application Program Interface (API);

20

30

40

45

55

54

validating the user against at least one identity manage-
ment system in the plurality of identity management
systems;

crawling at least one secure data source in the plurality of

secure data sources residing on a plurality of different
computer systems that is associated with the at least
one identity management system;

building an index of documents from the at least one

secure data source based on the crawling;

receiving a query from the user;

calling back at query time into the at least one identity

management system to obtain security attribute values
for the user;

appending the security attribute values for the user to the

query and using the appended query to query the index
of documents; and
determining one or more documents from the index of
documents in the plurality of secure data sources, that
are responsive to the query and accessible to the user
based on the security attribute values for the user and
respective security attributes of the one or more docu-
ments.
9. The non-transitory, computer-readable storage medium
of claim 8, wherein a number or type of objects required
from the user identification information by a first identity
management system in the plurality of identity management
systems is different from a number or type of objects
required from the user identification information by a second
identity management system in the plurality of identity
management systems.
10. The non-transitory, computer-readable storage
medium of claim 8, wherein the security attribute values for
the user comprises information selected from a group con-
sisting of: role information, group information, and project
information.
11. The non-transitory, computer-readable storage
medium of claim 8, comprising additional instructions that
cause the one or more processors to perform additional
operations comprising:
receiving, using the one or more processors, user identi-
fication information from an additional user in the SES;

determining that the additional user cannot be validated
against the at least one identity management system;
and

denying the additional user access to the at least one

secure data source.

12. The non-transitory, computer-readable storage
medium of claim 8, wherein the security attribute values for
the user change between receiving the user identification
information and receiving the query from the user.

13. The non-transitory, computer-readable storage
medium of claim 8, wherein the one or more security
attributes for the user comprises at least one grant attribute
or at least one deny attribute.

14. The non-transitory, computer-readable storage
medium of claim 8, wherein each of the plurality of identity
management systems is associated with a respective secure
data source.

15. A system comprising:

one or more hardware processors; and

one or more memory devices comprising instructions that,

when executed by the one or more processors, cause the
one or more processors to authenticate users in a secure
search system for searching a plurality of secure data
sources by configuring the one or more processors to:

receive user identification information from a user in a

secure enterprise system (SES);

US 9,467,437 B2

55

provide the user identification information to a plurality of
identity management systems in the SES, wherein each
of the plurality of identity management systems
receives the user identification information through a
respective Application Program Interface (API);

validate the user against at least one identity management
system in the plurality of identity management sys-
tems;

crawl at least one secure data source in the plurality of
secure data sources residing on a plurality of different
computer systems that is associated with the at least
one identity management system;

build an index of documents from the at least one secure
data source based on the crawling;

receive a query from the user;

call back at query time into the at least one identity
management system to obtain security attribute values
for the user;

append the security attribute values for the user to the
query and using the appended query to query the index
of documents; and

determine one or more documents from the index of
documents in the plurality of secure data sources, that
are responsive to the query and accessible to the user
based on the security attribute values for the user and
respective security attributes of the one or more docu-
ments.

10

15

20

25

56

16. The system of claim 15, wherein a number or type of
objects required from the user identification information by
a first identity management system in the plurality of iden-
tity management systems is different from a number or type
of objects required from the user identification information
by a second identity management system in the plurality of
identity management systems.
17. The system of claim 15, wherein the security attribute
values for the user comprises information selected from a
group consisting of: role information, group information,
and project information.
18. The system of claim 15, comprising additional
instructions that configure the one or more processors to:
receive, using the one or more processors, user identifi-
cation information from an additional user in the SES;

determine that the additional user cannot be validated
against the at least one identity management system;
and

deny the additional user access to the at least one secure

data source.

19. The system of claim 15, wherein the security attribute
values for the user change between receiving the user
identification information and receiving the query from the
user.

20. The system of claim 15, wherein each of the plurality
of identity management systems is associated with a respec-
tive secure data source.

#* #* #* #* #*

